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Computational Tractability of Searching for Optimal Regularities 

 

Ran Eilat� 

 

Abstract 

Aragones et al. (2005) introduce a model in which a decision maker, who is facing a large 

knowledgebase, attempts to formulate regularities, or functional rules, that explain an arbitrary 

variable he bears in mind. Among all possible regularities, the decision maker is looking for the one 

that is "optimal" from his subjective point of view. Aragones et al. analyze a specific example of 

optimality criteria and argue that finding such optimal regularity might be a difficult task for a 

computer, let alone for a human decision maker. Using a slightly generalized version of their model, 

this work proposes a framework for defining what optimal regularities are, and derives sufficient 

conditions under which formulating such regularities is computationally difficult, but also sufficient 

conditions under which this formulation is computationally easy. 

 

1. Introduction 

 Aragones, Gilboa, Postlewaite, and Schmeidler (2005, hereafter referred to as 

AGPS) discuss the phenomenon of "fact-free learning" in the context of human reasoning and decision 

theory. They introduce a decision maker who is facing a large knowledgebase, from which he would 

like to extract empirical regularities to describe the data. After a detailed examination of the 

knowledgebase, the decision maker formulates a regularity that is optimal from his subjective point of 

view. The term "fact free learning" is used to describe the phenomenon that, without acquiring any 

new factual knowledge, the decision maker may learn something new by noticing a regularity, which 

describes the data better than the one he had found before
1
. The main result of AGPS is that finding a 

"best" regularity is a computationally hard problem. Consequently, they argue that the computational 

complexity of the problem may explain fact free learning: the reason that people do not find the "best" 

regularities to describe the data in the first place is that this task is computationally intractable. 
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 More generally, fact-free learning would also occur if the decision maker never thought about the problem explicitly, until a 

certain regularity is pointed out to her. Here we assume that the decision maker is already aware of the learning problem, did 

her best in finding a regularity that describes the data, but may still be surprised to find that another regularity is a better way to 

summarize evidence. 
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To make the above claim well-defined it is required to specify how one models (i) regularities in 

databases; (ii) "best" regularity; and (iii) a computationally "hard" or "easy" problem.  AGPS model 

regularities by linear regression equations, a choice which is rather natural to economics.  They define 

"hard" problems by the notion of NP-Completeness, which is the most standard definition of high 

computational complexity in computer science. An "easy" problem is then defined to be any problem 

that is not hard (see Appendix B for definitions and short explanation of the terms). However, there 

are many ways in which one may define the "best" regularity.  In this paper we show that the 

qualitative result of AGPS depends on this definition. 

Specifically, AGPS assume that the decision maker prefers regression equations that are, other things 

being equal, as accurate and as simple as possible. They use 
2R  as a measure of accuracy, and the 

number of explanatory variables as a measure of the complexity of the regression equation. To 

capture the tradeoff between the two criteria, the decision maker is ascribed a utility function 

u(accuracy, complexity), increasing in the first argument and decreasing in the second, and the 

"optimal regularity" is that whose accuracy and complexity properties maximize u.  AGPS prove that 

this utility function is hard to maximize. 

It is not entirely obvious, however, that the number of explanatory variables used in a regression 

equation is the most natural measure of its complexity.  For instance, Lasso, proposed by Tibshirani 

(1996), is a popular statistical technique for model selection, which penalizes the statistician for using 

high absolute values of the regression coefficients.  That is, the measure of complexity implicit in 

Lasso is ∑ =

m

j jb1
||  where 

mjb ..1=  are the coefficients in the regression.  (Specifically, Lasso prescribes 

to choose the highest 2R given a certain constraint on this sum)  This measure depends on the 

coefficients 
mjb ..1= in a continuous way, as opposed to the number of coefficients, which is obviously 

a discontinuous function (around 0=jb  for each j).  As such, one may consider the Lasso constraint 

a more reasonable measure of the complexity of a regression, and then wonder whether the results of 

AGPS would hold for such measure
2
.   

Incidentally, it will follow from our analysis that Lasso is not subject to the same critique, that is, that 

it does not give rise to "hard" problems.  Thus, if one takes Lasso as a reasonable criterion for model 

selection by a decision maker, it is not obvious that fact-free learning, to the extent that it exists, 

follows from computational complexity arguments.  As it turns out, however, the continuity of the 

measure of complexity (with respect to the coefficients of the regression) is not necessarily the crux of 

the issue. 
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We assume that complexity entails a burden or a cost incurred by the decision maker, and consider a 

family of cost functions that are additive across the different coefficients.  Specifically, suppose that 

the cost imposed by a model with 
mjb ..1=  is ∑ =

m

j jb1
)(ϕ  where ℜ→ℜ:ϕ  is symmetric around 0. 

Under some mild assumptions we show the following results: (I) if ϕ  is weakly convex on +ℜ , then 

finding the model that maximizes 2R   given a bound on the cost is a problem that can be solved 

within polynomial time, that is, an easy problem.  On the other hand - (II) if ϕ  is weakly concave on 

+R (but not linear) then the same problem becomes NP-Hard, and, (III) if ϕ  is non-decreasing on 

+R  and discontinuous at 0 the problem is, again, in NP-Hard.  

Note that we generalize the result of AGPS, but we also provide other results that limit its 

implications.  To see that results (II) and (III) generalize that of AGPS, observe that AGPS use the 

number of variables as a measure of complexity.  That is, they use a function ϕ  that equals 1 for any 

non-zero value, and 0 at zero.  We show that each of two properties of this function suffices for the 

conclusion that the decision maker faces a hard problem: first, this  ϕ  is weakly concave on 
+ℜ , 

and, second, it is discontinuous at 0 . On the other hand, our first result limits the implications of 

AGPS’s result by showing that there are many reasonable cost functions for which the problem will 

be easy.  Specifically, if the chosen ϕ  is weakly convex on 
+ℜ , as in the example of Lasso, there is 

an efficient algorithm for finding the "best" regularity.  Roughly stated, the robustness of the result of 

AGPS depends on whether one believes that a concave or a discontinuous function are more 

reasonable than a convex one.  

One may further question the result of AGPS by wondering whether linear regression is a convincing 

model of the way individuals generate regularities, as well as by considering the validity of NP-

Completeness as an intuitive measure of "hardness".  These questions are beyond the scope of this 

paper.
3
  

The rest of this paper is organized as follows: Section 2 lays out the framework and defines the 

optimization problems; Section 3 proposes sufficient conditions under which those problems are hard 

and sufficient conditions under which those problems are easy, in terms of computational complexity; 

Section 4 concludes. Proofs can be found in the Appendix A. Short review of the concepts of 

computational complexity can be found in appendix B. 

 

                                                 
3
 AGPS consider these questions and attempt to justify their modeling choices in these regards.  We find that these modeling 

choices are more standard and less questionable than the measurement of complexity by the number of variables (with non-zero 

coefficients). 
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2. Framework 

Let 
nRY ∈  be a column vector denoting an arbitrary economic variable with n observations. 

Assume that a decision maker (henceforth DM) wishes to formulate a rule, in the form of linear 

regression, which explains the variance of Y using the variance of some other explanatory variables. 

The explanatory variables are chosen from a large knowledgebase, denoted Π , containing m  

variables },{ 1 mXX K  with n observations each, formally: 
nXmR∈Π  , ),( 1 mXX K=Π , 

n

i RX ∈ . 

Observe that, since rules are assumed to have the structure of a linear regression, each rule can be 

fully described by a vector of coefficients 
mRb∈ . Given a vector b, let ),,(2 bYR Π  be a function 

that calculates the goodness of fit statistic when Y  is regressed on Π  and the elements in the vector 

b are used as coefficients
4
. For simplicity of notations let us fix Π  and Y  throughout the discussion 

and refer to this function as if it depends on b only, that is - ]1,0[:)(2 →ℜmbR . Henceforth )(2 bR  

is adopted as the measure for (in-sample) accuracy of any vector 
mRb∈ . We assume also that rules 

can be characterized by the (subjective) complexity that the DM ascribes to them. We define a cost 

function 
+→Θ RRb m:)(  that determines the measure of complexity that is ascribed to any vector 

mRb∈ . We consider this measure of cost to be additive across the different coefficients. Specifically, 

suppose that ∑ =
=Θ

m

j jbb
1

)()( ϕ , where 
jb  are elements of mRb∈  and +→ RR:ϕ  is a non-

decreasing function on ),0[ ∞  and symmetric around 0 (that is, )()( jj bb −=ϕϕ ). We also assume 

that Θ  can be evaluated within constant time and memory space
5
. 

The objective of the DM is to find a regularity b that maximizes the accuracy measure subject to a 

given cost. Formally, 

 

Problem 1 (Const-Opt): Given ΘΠ,,Y  and +ℜ∈C   find 
*b  such that  

CbtsbRArgmaxb Mb
≤Θ=

ℜ∈
)(..)(2*  

                                                 
4 Formally, ( )∑ =

−−=
n

i i

T yyeebR
1

22 /1)( , where bYe Π−= , iy is the ith element of Y, and y is the average of the 

elements in Y. 

5 In other words – we assume that the time and memory required for calculating the cost for any given vector b are independent 

of b itself and are finite. This is a very weak technical assumption. 
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In the economic literature such an optimization problem is known as constrained regression. In a 

quite different form, yet sharing the same solution, it is sometime also referred to as penalized 

regression
6
. Our goal is to propose sufficient conditions under which the solution of Const-Opt is 

"hard" and sufficient conditions under which this solution is "easy", in terms of computational 

complexity.   

At this point it is already quite evident that the explicit functional form of Θ  plays a major role in our 

complexity analysis and that its mathematical characteristics are the core of our proofs and results. 

The economic literature proposes several models with an explicitΘ , suggesting quite diverse range 

of interpretations for this constraint. Most of the models can be classifies into two crude categories of 

interpretation – statistical constraints and cognitive constraints. The class of statistical constraints 

consists of models in which a penalty on the size of the coefficients is imposed in order to achieve 

some desirable statistical properties such as a lower variance for predicted values or to reduce the 

effect of co-linearity in the variables (see a discussion in Hastie et al. 2001). For example, Frank and 

Friedman (1993) introduced the bridge regression, in which the objective is to find a vector  
bridgeb̂  

such that: 

( ) ( ) constbtsbY-bY-b
m

j j

T

b

bridge ≤ΠΠ= ∑ =1
||..argminˆ γ  

Where 0≥γ and jb  is the j
th
 element of b. The bridge regression uses the cost function to shrink the 

coefficients of the regression by imposing a penalty on their size. Under several conditions this 

shrinkage biases the results but lowers the MSE. Some well known special cases of the bridge include 

the Ridge regression (Hoerl and Kennard (1970)) where 2=γ  and the Lasso regression in which 

1=γ . The interest in using the last is constantly growing,  mainly since it tends to yield a sparse 

coefficients vector (depending on the size of const), i.e. LASSOb̂  typically has relatively few non-zero 

coefficients (In contrast, ridge regression typically yields RIDGE
b̂  with all coefficient non-zero). In a 

way, Lasso uses a continuous procedure to identify and select the most relevant variables in the 

dataset. It thus suffers less from high variance than discrete selection procedures (that are discussed 

later). As far as we know, there are no known practical applications for 10 << γ . Our results below 

show that for these values ofγ , the constrained optimization problem is in NP-Complete.  This is a 

                                                 
6 In other disciplines of research it may also be known as regularized approximation. See, for example, Boyd and 

Vandenberghe (2004), Chapter 6, for discussion of engineering-oriented problems. 
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plausible explanation for the absence of model that use these values of γ . On the contrary, for 

several years there are well known algorithms that solve both Lasso and Ridge regression efficiently 

(See, for example, Efron et al. 2004 or Osborne, Presnell and Turlach, 1999 for Lasso algorithms and 

every standard convex optimization algorithm for the Ridge). Also note that solving the degenerate 

case of constb =Θ )( , that is, the cost is constant and does not depend on the elements of b, is 

equivalent to solving Ordinary Least Squares, which has various polynomial time algorithms for 

solution (QR decomposition and Cholesky decomposition are only two examples). 

The class of cognitive constraints is more subtle and consists of models that try to capture various 

aspects of cognitive limitations of human perception. For example, consider a DM who, other things 

being equal, prefers rules with fewer explanatory variables. In their paper, Aragones et al. (2005) 

suggest three explanations for such preference: first, people tend to have more faith in the robustness 

of relationships that use fewer variables than in those that use more. Second, when fewer variables are 

involved, people might find it easier to make up explanations for regularity in the data, and third, the 

more explanatory variables involved, the more chances that the data will not be fully available to the 

DM. In this case the cost is higher as more variables are involved in the regression. Using the same 

notation as above, AGPS's problem can be formalized as 

( ) ( )




≠

=
=≤ΠΠ= ∑ = 0if1

0if0
)()(..argminˆ

1 x

x
xwhereconstbtsbY-bY-b

m

j j

T

b

AGPS ϕϕ  

This technique, which is usually referred to as subset-selection or regressors-selection in the 

literature, is also a well-studied econometric method, sometimes motivated by pure statistical 

incentives. AGPS prove that this problem is hard to solve in terms of computational complexity. 

We proceed by defining the "accuracy-cost feasible-set", that is the set of  (r,c) pairs for which there 

exists a vector b whose accuracy measure is (weakly) higher than r and cost measure is (weakly) 

lower than c. Formally,  let Γ  denote the "accuracy-cost feasible-set", i.e.: 

{ }cbandrbRRbcrY m ≤Θ≥∈∃≡ΘΠΓ=Γ )()(|),(),,( 2  

We can now ask the question whether a specific accuracy-cost measure is feasible in a given 

regression setup, formally: 

 

Problem 2 (Feasibility): Given ]1,0[,,, ∈ΘΠ rY  and +∈ Rc  determine whether Γ∈),( cr  

 

As we shall see, the complexity analysis of problem Feasibility will turn out to have a crucial part in 

the proof for hardness of problem Const-Opt, as the following remark suggests: 
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Remark: Given any Y,Π  andΘ , if Feasibility is computationally hard then Const-Opt is 

computationally hard. 

 

The proof is trivial. Recall that according to our definitions every problem that is not hard is said to be 

easy. Thus, the remark is equivalent to the statement that if Const-Opt is easy then Feasibility is easy, 

which follows directly from the definitions. 

 

3. Computational Complexity Results 

We will now specify conditions that are sufficient for the feasibility problem to be hard. Consider the 

following properties of a real value function +→ RR:ϕ : 

P-1. Symmetric around 0:  )()( xx −=ϕϕ  

P-2. Weakly concave, but not linear, on ),0[ ∞ 7
 

P-2 also implies that ϕ  is non-decreasing on ),0[ ∞ . Whenϕ  is interpreted as a cost function, the 

first property is motivated by an implicit assumption that there is no essential difference between the 

"burden" imposed on the DM by a positive or negative regression-coefficients with the same absolute 

value. This assumption can be slightly relaxed, but it is crucial to our proof that both positive and 

negative coefficients are penalized.  The second property suggests concavity which implies, in 

particular, that changing a coefficient from 0 to ε  impose a marginal cost that is not smaller than the 

marginal cost of changing it from 0>β  to εβ + .  (In fact, as will be clear from the proof, this is the 

only implication of concavity that is used in the theorem below.) It turns out that these properties are 

sufficient to imply that problem Feasibility is hard, or formally: 

 

Theorem 1: For every ]( 1,0∈r ,  and every function ϕ  that satisfies P-1 and P-2, the following 

problem is NP-Complete:  

(Problem Feasibility)  Given ]1,0(,,, ∈ΘΠ rY  and 
+∈Rc  determine whether Γ∈),( cr . 

 

The proof can be found in appendix A. In essence the theorem argues that if the cost function is the 

sum of nonlinear weakly concave functions of the estimated paramters, then deciding whether an 

accuracy-cost pair is feasible cannot be generally done within time which is polynomial in the size of 

                                                 
7 This could be relaxed such that ϕ  is required to be non-decreasing, weakly concave, but not linear, on ],0[ a  for for any 

a  such that ),0( ∞∈a . 
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the data
8
. Moreover, the result is independent of the exact functional form of ϕ  and is also 

independent of the required measure of accuracy (it is hard for every ]( 1,0∈r ).  

The domain of functions ϕ  that yields this complexity result can be expanded further. For example, 

consider a DM that is facing a cost function which is discontinuous at 0. Such cost function might 

reflect a one-time effort needed to collect data and maintain a variable in the database. Another 

interpretation for such discontinuity might be a cognitive effort required to evaluate algebraic 

calculations with a non-zero coefficient when using regularities for prediction. Formally, consider the 

following properties of a real value function +→ RR:ϕ : 

Q-1. Symmetric around 0:  )()( xx −=ϕϕ  

Q-2. Non-decreasing on ),0[ ∞  

Q-3. Discontinuous at 0, that is -  )0()(lim
0

ϕεϕ
ε

>
+→

  

Note that no assumptions are made about the second derivative - it might be positive, negative or it 

might not exist at all. It turns out, however, that these properties are also sufficient for implying that 

problem Feasibility is hard, or formally: 

 

Proposition 2: For every ]( 1,0∈r ,  and every function ϕ  that satisfies Q-1,2,3, the following 

problem is NP-Complete:  

(Problem Feasibility)  Given ]1,0(,,, ∈ΘΠ rY  and 
+∈Rc  determine whether Γ∈),( cr . 

 

The proof can be found in appendix A.  

An immediate consequence of Theorem 1 and Proposition 2: 

 

Corollary 3: for every function ϕ  that satisfies P-1,2 or Q-1,2,3 the following problem is NP-Hard: 

(Problem Const-Opt):  Given Π,Y  and +ℜ∈C   find 
*b  such that  

CbtsbRArgmaxb Mb
≤Θ=

ℜ∈
)(..)(

2*  

 

Recall that AGPS's problem can be formalized as if they use a cost function )(xϕ  that equals 0 at x=0 

and 1 for 0≠x . Notice that such ϕ  satisfies both Q-1,2,3 and P-1,2. Thus our result is a 

                                                 
8 Note, however, that this result is stated in terms of "worst-case" analysis, as all problems in NP-Complete are. That is – there 

might exist a dataset for which solving the problem is polynomial. 
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generalization of the result of AGPS and it is clearly negative – it argues that it is sufficient for ϕ  to 

be nonlinear weakly concave, or discontinuous at 0, in order to make the worst-case solution of the 

optimality problem non-polynomial in the size of the data. In other words, under rather weak 

assumptions, finding the optimal solution is generally a hard task for computers, let alone for human 

decision makers.  

We now turn to specify conditions that are sufficient for the problem Const-Opt to be easy. We retain 

the assumption that Θ  is additive across the coefficients. As an example, consider an economist that 

finds the Lasso constraint to be the most adequate measure of complexity, for instance due to its 

simplicity and continuous nature. Note that the cost function ϕ  that is implicit in Lasso satisfies 

neither P-2 nor Q-3. In this case, as we have indicated before, and now we state explicitly, a 

polynomial algorithm for solution exists, 

 

Proposition 4: For every ]1,0[,,, ∈ΘΠ rY  and +ℜ∈C  if ||)( jj bb =ϕ  the following problem 

has a polynomial time algorithm for solution:  

(Problem Const-Opt):  find 
*b  such that  CbtsbRArgmaxb Mb

≤Θ=
ℜ∈

)(..)(2*
 

 

Detailed algorithms for solution along with discussion about their efficiency may be found in Efron et 

al. (2004) or Osborne, Presnell and Turlach (1999). Note that this remark limits the scope of APGS 

results as it shows that choosing a different cost measure turns the problem to be computationally 

easy. It turns out, however, that this result can be further generalized for a wide range of functionsϕ  , 

using algorithms of convex optimization.  

Consider the following properties of a real value function +→ RR:ϕ : 

S-1. Symmetric around 0:  )()( xx −=ϕϕ  

S-2. Weakly convex on ),( ∞−∞  

S-3. Bounded by a polynomial of 
jβ   

S-4. Its subgradient  can be calculated within polynomial time (it exists since the 

convexity of ϕ  on ),( +∞−∞  implies continuity) 

The motivation for S-1 is the same as for P-1.  S-2 requires ϕ  to be convex, suggesting an increasing 

marginal cost of coefficients (i.e. – the larger the coefficient is, the more costly it would be to increase 

its value). It might reflect, for example, the preference of a large number of small coefficients to a 

small number of large coefficients. Such preference might be motivated, for example, by statistical 
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considerations. S-3 and S-4 are very weak technical conditions and both can be relaxed to some extent 

as many ad-hoc optimization techniques that exist in the literature do not require them. We claim that 

if ϕ  satisfies S1-S4 then Const-opt becomes an "easy" optimization problem, and formally: 

 

Proposition 5: For every ]1,0[,,, ∈ΘΠ rY  and 
+ℜ∈C  and every ϕ  that satisfies S-1-4, the 

following problem has a polynomial time algorithm for solution: 

(Problem Const-Opt):  find 
*b  such that  CbtsbRArgmaxb Mb

≤Θ=
ℜ∈

)(..)(2*  

 

The polynomial time solution can be achieved using the ellipsoid method which is a well studied 

algorithm from the literature of convex optimization (see, for example, Ben-Tal and Nemirovski 

(2001), Chapter 5). This method is applicable when both the objective function and the constraint of 

the optimization problem are convex and "well-behaved" (i.e. polynomially computable and of 

polynomial growth) which is ensured by S-1 to S-4. It also requires that the problem would have a 

bounded feasible set, a property that is satisfied by Const-Opt, and proved in appendix A
9
.  

 

4. Discussion 

Economic agents cope with a world that is immensely complex but that is, nonetheless, highly 

patterned. The capability of seeking patterns in data, or finding regularities in a knowledgebase, is 

maybe the most fundamental aptitude required from a decision maker. It goes without saying that an 

economic agent that lacks this ability would be able to predict, explain, and understand very little; he 

would therefore have no rational basis on which to choose his actions.  Typically, however, the 

agent’s problem is the opposite one:  when dealing with complex environments economic agents may 

recognize a large number of possible patterns, differing from each other in many parameters, and 

particularly in their rate of accuracy.  It is then reasonable to assume that the more accurate regularity 

is preferred.  Our work relies on the assumption that besides accuracy, the decision maker prefers his 

regularities to be also as simple as possible.  

While preference for accuracy is quite evident, simplicity is a bit more subtle.  Back in the 14
th
 

century, in the famous Occum's razor, William of Ockham suggested that, given two equally valid 

explanations for a phenomenon, one should embrace the less complicated one.  About six hundred 

                                                 
9
 Though it is polynomial, the ellipsoid method is not the most efficient algorithm known to date. For example, if ϕ  is also 

differentiable on ),( +∞−∞ , then much more efficient interior point optimization techniques may be applied (see, for 

example, Boyd and Vandenberghe (2004), chapter 11). 
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years later, Albert Einstein has been attributed with the remark that "Everything should be made as 

simple as possible, but not simpler".  In between, as well as in the past few decades, scientists and 

psychologists tend to agree that simplicity is a desirable property when patterns of data are considered 

(see, for example, Chater 1999).
10
  They do not agree, however, on a unique measure for quantifying 

simplicity.  As the above results indicate, this quantification is crucial for analyzing the tractability of 

the problem.  

Following AGPS, this work proposed a framework in which a tradeoff between accuracy and 

simplicity arises.  Consequently, when a decision maker attempts to find the most accurate regularity 

in a database, given a certain measure of simplicity, he faces a non-trivial optimization problem.  In 

some cases, as was earlier argued, this challenge turns out to be a computationally intractable 

problem.  We adopt the notion of cost functions to measure simplicity – the simpler regularities are, 

the less cost they involve.  We considered three types of cost functions – concave, convex and 

discontinuous at 0, each implying different computational complexity.  The question of which of these 

types is more reasonable depends on the aspect of simplicity that one wishes to capture.  

Convex cost functions ensure existence of an efficient algorithm for the solution of the optimization 

problem.  Such functions are ascribed to a decision maker who prefers a large number of small 

coefficients to a small number of large coefficients (e.g. Lasso).  Other things being equal, such a 

decision maker is assumed to prefer a regression with smaller partial derivatives with respect to the 

variables of the regression. When human reasoning and decision making are considered, this 

mathematical preference is naturally translated to preference for regularities in which fluctuations in a 

single variable do not affect the result "too dramatically".  For example, consider a decision maker 

who uses regularities as policy functions. That is, given many state variables he evaluates a regression 

and takes actions according to the result.  Assume further that he favors stability, that is, he wishes to 

reduce the magnitude of changes in his behavior across time due to environmental changes. Such a 

decision maker would prefer smoother policy functions to more volatile ones.  A convex function is 

then suitable to model this cost since it yields a regression with a relatively small coefficient for each 

variable, and thus a policy function that reacts in a relatively moderate manner to changes in the 

environment.  

On the other hand, concave functions and functions that are discontinuous at 0 are used to model 

situations where, everything else being equal, the decision maker prefers a small number of relatively 

large coefficients to a large number of small coefficients.  Concave functions are then suitable since 

                                                 
10 Preference for simplicity in philosophy of science has a normative flavor, as in Occum’s razor argument.  In psychology, 

simplicity is offered as a descriptive theory of people’s preferences between theories.  As a descriptive theory, simplicity was 

mentioned by Wittgenstein (1922, 6.363) at the latest. 
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they propose "decreasing marginal cost" for coefficient units.  Functions that are discontinuous at 0 

may also be suitable if there is a "fixed cost" associated with including a variable in the regression.  

For example, consider a decision maker who, due to cognitive limitations, seeks to minimize memory 

load, that is, the number of coefficients that are different from 0.  Occum's razor gives rise to this type 

of preferences, and it was also used as the motivation for the model proposed by AGPS.  Another 

example is a decision maker who wishes to construct a regularity to be used for fast and frugal 

predictions, that is, predictions where accuracy is sacrificed for the sake of faster evaluation, which is 

achieved by using only a small number of variables in the equation.  

To conclude, we believe that the implications of our work are twofold.  In a purely theoretic context 

we proposed sufficient conditions under which a wide range of optimization problems is difficult, in 

terms of computational complexity.  This result does not rely on any economic assumption and is 

therefore applicable in every discipline where constrained regression problems are used.  

In the context of decision making we both generalized and outlined limitations on the result of AGPS. 

On the positive side, we proposed sufficient conditions under which the optimization problem is 

computationally easy.  This result should be interpreted carefully, since we do not claim that such 

problems are necessarily easy to solve by a human decision maker.  We do claim, however, that in 

those cases fact free learning cannot be explained by the type of arguments suggested by AGPS.  

On the negative side we proposed sufficient conditions under which the optimization problem is NP-

Hard.  We do not claim that the computational implications of this result are necessarily a tight upper 

bound on the human cognitive capabilities.  We do adopt, however, the assumption that those 

problems are practically infeasible for human decision makers.   

The computational complexity of certain problems does not mean that individuals always do poorly 

on these problems.  It is quite possible that, learning from each other, economic agents can improve 

the solutions that they find on their own.  In our case, it suffices that a single individual, such as a 

scientist or a political leader, point to a certain regularity, for this regularity to be adopted by many 

individuals who have similar cost functions.  Thus, to the extent that concave or discontinuous cost 

functions are reasonable, computational complexity may help explain the phenomenon of fact-free 

learning, as well as the role of social learning. 
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Appendix A - Proofs 

Proof of Theorem 1 and Proposition 2 

Remark A.1: The proof proposed here is a generalization of a proof proposed by Aragones et al (2005) 

Remark A.2: For a brief review of the concepts of the theory of complexity refer to appendix B. 

Note that for every function ∑=Θ )( ibϕ  and every ]1,0(∈r  the feasibility problem can be stated 

formally as: 

Problem Feasibility:  

Input:   (1) 
mXnR∈Π    (2) 

nRY ∈   (3) 
+∈ Rc   

Output:  Is there a vector 
mRb∈  such that rbR ≥)(2  and cb ≤Θ )( ?  Yes / No 

Consider also the following NP-Complete decision problem (see Karp 1972): 

Problem Exact Cover:  

Input:   (1) a finite set RS ⊂   (2) a set )(SP⊆Ω  (set of subsets of S) 

Output:  Are there pairwise disjoint subsets in  Ω  whose union equals S?  Yes / No 

To show that Feasibility is NP-Complete it is sufficient to show that: 

1. Feasibility is in NP 

2. There exists a polynomial reduction from Problem Exact Cover to Problem Feasibility 

The first requirement is almost trivially satisfied in this context. Given an arbitrary vector 
mRb∈  

we have to determine whether rbR ≥)(2  and cb ≤Θ )(  within polynomial time. Since calculating 

)(2 bR and )(bΘ  can be done within polynomial time, then we are done.  

The second requirement is a bit more complex. The concept of polynomial reduction can be thought 

of as a construction of a translation function F, such that F takes input to the problem of Exact Cover 

and translates it into input for problem Feasibility: { } { }cYsF ,,,: Π→Ω  in such a way that: 

1. The translation algorithm is polynomial in the size of the input 

2. )()( CoverExactFyFeasibilit =o , that is - the two functions return the same yes/no 

result for every input. 

Construction of such F would lead to the result that if there exists a polynomial time algorithm for 

solving Feasibility then, using the function F, there exists polynomial time algorithm for solving 

Exact Cover. In other words – Feasibility would then be at least as hard as Exact Cover, a problem  

for which there does not exists, to date, any known algorithm of solution. 

In the first part of the proof we propose a construction of such F. In the second part we show that  

)()( CoverExactFyFeasibilit =o  holds. 
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Part I: Construction of F 

 

Proposition A.3: for any non-decreasing real-valued ϕ  function that satisfies either P-1,2 or 

Q-1,2,3, there exists a constant 
+∈ Ra  such that  ( ) )()1()()0( aaa λϕλϕϕϕ +−<+  

}1,0/{+∈∀ Rλ    (Short proof follows later). 

 

Let there be given S and Ω . Assume without loss of generality that { }sS ,,1K=  and that 

{ }lSS ,,1 K=Ω  (where ls,  are natural numbers). We construct )1(2 ++= lsn observations of 

lm 2=  variables in the following way: 

1. Let 
)1(2 ++∈ lsRY  be a column vector and denote its values by niiy ≤)( .   

Let 0≥M  be a constant to be specified later 

For lsi +≤   set  ayi =  ( a  is taken from the definition of proposition A.3) 

For 1++= lsi      set  My ls =++ 1  

For 1++> lsi   set )1( ++−−= lsii yy  

2. Let 
lxlsR 2)1(2 ++∈Π . Observe that Π  is consisted of 2l column vectors, and 

denote them by lXX ,,1 K  and lZZ ,,1 K . Their corresponding values will be 

denoted ljniijx ≤≤ ,)( , ljniijz ≤≤ ,)( . 

For si ≤   set  1=ijx  if jSi∈  and 0=ijx  if jSi∉ ; 

For si ≤    set 0=ijz ; 

For lsis +≤<  set  1== ijij zx  if jsi +=  and 0== ijij zx  if jsi +≠ ; 

For 1++= lsi   set 0,1,1 == ++++ jlsjls zx ; 

For 1++> lsi   set jlsiij xx ),1( ++−−=  and jlsiij zz ),1( ++−−= ; 

 

3. Let C be defined in the following way: ( ))()0( alC ϕϕ +⋅=  
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EXAMPLE: 

 

 

Remark A.4: The bottom half of the matrix Π , as well as the bottom half of the vector Y, are the 

negatives of the respective top halves. This implies that each of the variables lXX ,,1 K , lZZ ,,1 K  

and Y has a mean of zero and therefore a linear regression of Y on Π yields an intercept of zero. 

 

Remark A.5:  The translation function F is polynomial in the size of the input. 

 

Denote )(2 bR  as the goodness-of-fit measure (R-squared) of a vector b in the ordinary linear 

regression setup where Y  is regressed on Π . Formally, ( )∑ =
−−=

n

i i

T yyeebR
1

22 /1)( , 

where bYe Π−= , 
iy is the i

th
 element of Y, and y is the average of the elements in Y. 

  

Remark A.6: The vector b  that maximizes )(2 bR is independent of M (since the values of the rows 

s+l+1 and 2*(s+l+1) in Π  are all zero). 
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−−−
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−
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l
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l
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ljX ..1= ljZ ..1=

a

a

a

a

a

a

a

a

a

a

−

−

−

a

a

a

a

−

−

−

−

M−

Y

l

s

l

s

M

The matrices on the left are an illustrative 

example for the construction of Π  and Y. This 

example shows how the construction is done for 

S that consists of 3 elements, i.e. { }3,2,1=S  and 

Ω  that consist of 4 subsets of S as follows: 

U
4

1=

=Ω
i

iS  and }2,1{1 =S , { }3,12 =S , { }33 =S , 

{ }14 =S  

Note that in this example a (unique) exact cover 

exists as SSS =∪ 31
 and ∅=∩ 31 SS . 
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Let Π̂  be equal to Π  without observations 1++ ls  and ( )12 ++ ls . Define )(ˆ 2 bR  to be the 

goodness-of-fit measure (R-squared) of a vector b in the OLS regression setup where Y is regressed 

on Π̂ . 

 

Lemma A.7 (R-squared-equivalence): There exists M̂  such that rbRbRb ≥⇔=∀ )(1)(ˆ 22
 

A constructive proof, which finds such M̂  in O(1), follows later. 

Set MM ˆ= and observe that the following two problems are equivalent: 

1. Does there exist a vector 
mRb∈  such that cb ≤Θ )(  and rbR ≥)(2 ? 

2. Does there exist a vector 
mRb∈  such that cb ≤Θ )(  and 1)(ˆ 2 =bR ? 

 

Part II: Show that )()( CoverExactFyFeasibilit =o  

We wish to show that: 

a) If the output of FyFeasibilit o)(  is no then the output of Exact cover is no 

b) If the output of FyFeasibilit o)(  is yes then the output of Exact cover is yes 

 

Or Equivalently: 

S has an exact cover from Ω  ⇔ There exists a vector 
mRb∈  such that cb ≤Θ )(  and rbR ≥)(2  

This is, in turn, equivalent to (using lemma A.7): 

S has an exact cover from Ω  ⇔ There exists a vector 
mRb∈  such that cb ≤Θ )(  and 1)(ˆ 2 =bR  

 

Part II-a 

We wish to show the following direction:  S has an exact cover from Ω  ⇒There exists a vector 

mRb∈  such that cb ≤Θ )(  and 1)(ˆ 2 =bR  

Assume that such an exact cover exists. That is, assume that there is a set { }lJ K1⊆  such that 

{ }
JjjS

∈
 constitutes a partition of S. Formally, ( ) SS

Jj j =∈U  and  kjJkjSS kj ≠∈∀∅=∩ ,, .  

Let ( )
ljj ≤

β denote the coefficients of ( )
ljjX
≤
and ( )

ljj ≤
γ denote the coefficients of ( )

ljjZ
≤
. For 

Jj∈ set aj =β  and 0=jγ , and for Jj∉ set 0=jβ  and aj =γ .  
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For every si ≤  the following equality holds:  

iJj ij

l

j ijj

l

j ijj

l

j ijj yaxaxzx ====+ ∑∑∑∑ ∈=== 111
βγβ  

The first equality holds since 0=ijz for every si ≤ . The second equality holds due to the values 

assigned to
jβ . The third equality follows from the construction of Π  since for every si ≤  there 

exist exactly one Jj∈ for which 0≠ijx  (that is the j  for which )jSi∈ . 

For every lsis +≤< the equality:  

ijj

l

j ijj

l

j ijj yazx =+=+=+∑∑ ==
0

11
γβγβ  

follows from the construction of Π and the assignment of jβ  and jγ  

It is also clear that the same arguments hold for the bottom half of Π̂ , Thus 1)(ˆ 2 =bR . 

To see that cb ≤Θ )(  observe that since for every lj ≤ either ( )0, == jj a γβ  or  ( )ajj == γβ ,0  

then for every lj ≤  the following equality holds 

)0()()()( ϕϕγϕβϕ +=+ ajj
 

and therefore 

( ) ( ) calbb
l

j jj

l

j j =+⋅=+==Θ ∑∑ ==
)0()()()()()(

1

2

1
ϕϕγϕβϕϕ . 

QED. 

 

Part II-b 

We wish to show the following direction:  There exists a vector 
mRb∈  such that cb ≤Θ )(  

and 1)(ˆ 2 =bR ⇒   S has an exact cover from Ω  

Assume that there exists a vectorb such that cb ≤Θ )(  for which 1ˆ 2 =bR . Denote the coefficients of X 

and Z in the regression as ( )
ljj ≤

β  and ( )
ljj ≤

γ  correspondingly, as before. Note that since 1)(ˆ 2 =bR  

then the rows lsis +≤<  in Π̂  imply that for every lj ≤≤1  the equation ajj =+ γβ  holds.  

Claim:  cb ≤Θ )(  and ajj =+ γβ  for every lj ≤≤1   imply that either aj =β   or 0=jβ . 

Proof:  According to proposition A.3, for every lj ≤≤1 , the minimal value of )()( jj γϕβϕ + , when 

ajj =+ γβ , is acquired when either ),0( ajj == γβ  or )0,( == jj a γβ . It is clear, therefore, that 
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the minimal value of the cost function ( )∑ =
+=Θ

l

j jjb
1

)()()( γϕβϕ  can be not less than 

( ))0()( ϕϕ +⋅ al , which is exactly c. Therefore, existence of any 
jβ  that equals neither a  nor 0 

contradicts cb ≤Θ )( . 

Define Ĵ to be a set such that { }abjJ j == |ˆ . 1)(ˆ 2 =bR  implies that for every si ≤  the equality 

( ) ax
l

j jij =∑ =1
β  holds. Therefore, for every si ≤ it is also true that ( ) aax

Jj ij =⋅∑ ∈ ˆ
 which, in 

turn, implies that for every si ≤ there exists exactly one Jj ˆ∈ for which 1=ijx . Recall that Π̂  

was defined such that 1=ijx  if jSi∈  and therefore we conclude that for every si ≤ there exists 

exactly one Jj ˆ∈ for which jSi∈ . Thus, { }
JjjS
ˆ∈
 is well defined and constitutes an exact cover of 

S.    QED. 

 

Proof of Proposition A.3 

First note that for every function ϕ  that satisfies P-1,2 or Q-1,2,3 there exists ),0( ∞∈a  such that 

the line segment from  ( ))0(,0 ϕ  to  ( ))(, aa ϕ  lies strictly beneath the graph of ϕ  on the interval 

( )a,0 . If P-2 is satisfied than this property is true by the definition of concavity, and if Q-2,3 are 

satisfied then this property is true since )0(ϕ  is a global minimum. 

We wish to show that for such a  the following inequality holds:  

( ) )()1()()0( aaa λϕλϕϕϕ +−<+  }1,0/{+∈∀ Rλ . 

If 1<λ : 

Let ( )( ) )0(*/)0()()( ϕϕϕ +−= xaaxf , that is the equation that represents the line segment that 

joins )0(ϕ  and )(aϕ . )(xf  is linear and therefore - [ ]afafaff )1()()()0( λλ −+=+ . Note that 

)()(),0()0( aaff ϕϕ ==  and that ( )axxxf ,0)()( ∈∀<ϕ , thus  

( ) )()1()()0( aaa λϕλϕϕϕ +−<+  )1,0(∈∀ λ . 

If 1>λ :  

Both P-1,2 and Q-1,2,3 imply that ϕ  has a unique minimum at 0. Since in both casesϕ  is non-

decreasing then ( ) ( )aa ϕλϕ ≥  and since it is also symmetric then ( ) ( ) )0()1()1( ϕλϕλϕ >−=− aa . 

Summing up both inequalities yield: ( ) )()1()()0( aaa λϕλϕϕϕ +−<+ .  

QED. 
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Proof of Lemma A.7 (R-squared-equivalence) 

Using the notations defined above, we wish to find M̂ such that rbRbRb ≥⇔=∀ )(1)(ˆ 22  

Denote SSE ˆ and SST ˆ the explained sum of squares and the total variance of Y, respectively, of the 

regression of Y on Π̂  and denote  ESS and TSS as the variances of the regression of Y on Π . Thus, 

TSSESSbR /)( 2 =  and SSTSSEbR ˆ/ˆ)(ˆ 2 = . Observe that 
2)(2ˆ alsSST +=  and 

22 2)(2 MalsTSS ++= . Also, ESSSSE =ˆ and is independent of M. 

Define ( ) rrlsaM /1*)(*ˆ −+= . Note that M̂ is well defined for every ]( 1,0∈r , and that it 

can be calculated in O(1). 

 

(Direction only if):  Suppose 1)(ˆ 2 =bR . Therefore ( )ESSSSESTS == ˆˆ  and )(2 bR  is then 

given in the equation 

( )
r

rrlsalsa

lsa

Mals

als

TSS

SST
Rb =

−+++

+
=

++

+
==

/1)()(

)(

2)(2

)(2ˆ

22

2

22

2
2  

QED. 

 

(Direction if): Suppose )(2 bRr ≤ , that is 

( )
rR

rrlsalsa

lsaR

Mlsa

lsa
R

TSS

SST
R

TSS

SSE

TSS

ESS
Rr b

b
bbb *ˆ

/1)()(

)(*ˆ

2)(2

)(2
*ˆ

ˆ
*ˆ

ˆ
2

22

22

22

2
222 =

−+++

+
=

++
+

====≤

 

Eliminate r from both sides to get )(ˆ1 2 bR≤ , which, in turn, implies a strict equality, that is 

1)(ˆ 2 =bR , QED. 
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Proof of Proposition 7 (The feasible set of Const-Opt is bounded) 

Consider the Const-Opt  problem: 

Given ΘΠ,,Y  and +ℜ∈C   find 
*b  such that   CbtsbRArgmaxb M

b
≤Θ=

ℜ∈
)(..)(2*

. 

 

Calculate 
OLS

b , which is the vector of coefficients that maximizes the unconstrained least squares 

problem, that is )(2 bRArgmaxb Mb

OLS

ℜ∈
=  and set ∑ =

≡
m

j

OLS

jbQ
1

)(ϕ . Recall that +→ RR:ϕ  is 

symmetric and convex (and thus continuous) and therefore either: 

a. )( jbϕ  is strictly increasing in jb  

b. )( jbϕ  is constant. 

 If )( jbϕ  is constant then the problem is degenerated and can be solved using standard polynomial 

OLS techniques. On the other hand, if )( jbϕ  is strictly increasing in 
jb  then 

1−ϕ  is well defined. 

Set )(_ 1 QBOUNDC −≡ϕ . 

Note that since the unconstrained least squares coefficients attain the highest R-squared then no 

optimal solution can exceed its cost. Thus BOUNDC _  is the upper bound for every element in any 

optimal 
*b . Let TV  be a vector with m elements, each equals to BOUNDC _ , and observe that the 

feasible set is then bounded within an Euclidean ball, centered at the origin with radius of the 2L  

norm 
2TV .   QED. 
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Appendix B – concepts from the theory of computational complexity 

The following appendix gives a short introduction to the theory of computational complexity of 

algorithms. It is not intended to be used as an extensive survey of the definitions and results of the 

field, but rather as an orientation guide to the unfamiliar reader. Consequently we might have abused 

notation or use informal definitions in order to allow readability and clarity of the concepts. For 

extensive review of this field the reader may refer for one of many available resources and textbooks 

(for example see Garey and Johnson 1979). 

Generally speaking, computer science deals with finding solutions to problems that are defined in 

some formal language. The method of finding a solution to a problem is usually called an algorithm. 

The theory of computational complexity deals with classifying problems into complexity sets 

according to the algorithms that are used for their solution. Not all problems have an algorithm that 

solves them; such problems are called undecidable. Our discussion, however, focuses on those 

problems for which a solution algorithm exists; such problems are called decidable. 

Given an algorithm, we are interested in the amount of time it requires for evaluation, where time is 

usually approximated by the number of the steps it takes to find the solution. The time complexity 

function expresses the time requirements by giving, for each possible input length, the largest amount 

of time needed by the algorithm to solve a problem instance of this size. Denote the input size as n and 

the time complexity function as f(n). 

The "Big O" is a mathematical notation used to describe the asymptotic behavior of functions. Its 

purpose is to characterize functions’ behavior for very large inputs in a simple but rigorous way that 

enables comparison to other functions. More precisely, the symbol O is used to describe an 

asymptotic upper bound for the magnitude of a function in terms of another, usually simpler, function. 

Formally, a function f(n) is ))(( ngO  whenever there exists a constant c such that )()( ngcnf ⋅≤  

for all values 
0nn ≥ . A polynomial time algorithm is defined to be one whose time complexity 

function is ))(( npO  for some polynomial function p. An intractable problem is defined to be one that 

does not have any polynomial time algorithm that solves it. Simple calculations show that finding a 

solution to intractable problems may take very long time even for modern computers that perform 

millions of operations per second. Note that while they are hard to solve, intractable problems are still 

decidable, since there exists an algorithm that solves them. 

The theory of computational complexity classifies the universe of decidable problems into several 

subsets. The subset P (stands for polynomial) consists of all the decision problems that can be solved 

by a polynomial time algorithm. For example – the question whether, given a vector of numbers, there 

exist two numbers whose sum exceeds a given constant (solvable in )( 2nO , where n is the size of the 
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vector). The subset NP (stands for Nondeterministic Polynomial) consists of all the decision problems 

for which there exists a polynomial time algorithm that verifies a solution (but not necessarily finds 

it). That is, given a solution the algorithm verifies whether it is correct within polynomial time, 

without worrying about how hard it might be to find this solution. For example, suppose that p is a 

very large number that has only two factors, both are prime, r and q. The problem is to find r and q 

when only p is given. It turns out that the problem is very hard to solve when p is large. However, 

given r and q one can easily verify whether they constitute a correct solution by calculating r*q and 

checking whether it equals p.  

It is easy to see that NPP ⊆ . However, the question of whether NPP =  is one of the most 

important open questions in computer science these days. It is hard to overestimate the implications of 

a proof that would show that this equality holds. However, no such proof has been proposed to date 

and given the current state of knowledge it seems that the converse is true (that is - NPP ⊂ ). Thus, if 

NPP ≠  then the set PNP / is not empty, and there are problems whose solution cannot be found 

easily, but could be verified so.  

Let 
1Q  and 

2Q  denote two problems with a yes-no answer. We say that 
1Q  is reducible to 

2Q  if we 

can use 
2Q  to solve 

1Q . That is – if we can find a transformation f for which )( 2Qf  and 
1Q  return 

the same result for every input. If such a function f exists then it is called a reduction and denoted by 

21 QQ ∝ . If, in addition, f is polynomial then the reduction is called a polynomial reduction. 

Intuitively, in this case solving 
1Q  cannot be harder than solving 

2Q . 

A problem is said to be in the set of NP-Complete if (i) it is in NP (ii) all other problems in NP can be 

reduced to it. In a sense, the problems in the class of NP-Complete are the hardest problems of NP. If 

one succeeds in finding an algorithm that solves one of those problems using a polynomial time 

algorithm, then all problems in NP can be solved within polynomial time, thus P=NP. The first 

problem that was identified to be in NP-Complete is called Satisfiability (a result that is well known 

as "Cook’s theorem"). During the years of research many more problems have been identified to be in 

this class, for a partial list see Garey (1979). It follows that showing that a problem is in NP-Complete 

indicates that it is at least as hard as many other problems that many scientist over many years could 

not find an efficient (polynomial) algorithm for their solutions. Practically, In order to show that a 

new problem is in NP-Complete one has to show that (i) it is in NP (ii) it has a polynomial reduction 

from at least one problem that is already known to be in NP-Complete. Problems that satisfy only the 

second property are said to be in the class of NP-Hard. That is – NP-Hard problems are reducible 

from all the problems in NP, but are not necessarily themselves in NP. 
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