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Abstract

We consider the problem faced by a group of players who bargain over what public

signal to acquire before deciding on a collective action. The players di¤er in their pri-

vately known state-dependent payo¤s from taking the action, and therefore di¤er also in

their willingness to pay for the public signal. We take a mechanism design approach to

characterize the e¢ cient frontier of outcomes achievable via bargaining over information.

We identify novel distortions in the optimal information structure that arise from the

information asymmetry and from the fact that after the signal is realized, the outcome is

determined in equilibrium of a subsequent voting game.

Keywords: Collective decision-making, Mechanism-design, Information-design, Ra-

tional inattention, Public good provision.

1 Introduction

There are many situations in which a group of individuals need to take a collective decision in the

face of uncertainty. In such situations, the group members often want to have some information

presented to them prior to taking the decision. However, collecting and processing information

is costly in terms of time, e¤ort or money, and the group members typically have di¤erent

preferences regarding the �nal outcomes of their decision. How should the group members

decide what information to acquire and how to distribute its cost? Despite being ubiquitous,

this form of �collective bargaining�over information is largely underexplored in the literature.

This paper takes a preliminary step at understanding the outcome of such bargaining.

Consider for example a household that needs to make an important decision such as whether

to have a child, whether to send their child to a private or public school, or whether to relocate.

Such decisions typically depend on many unknown factors and hence the couple may want to

invest resources in acquiring some information about them. While both partners typically want
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to take the �right decision�, each may not necessarily know how intensely the other feels about

making the �wrong�decision. How informed would the couple choose to be? Would the couple

acquire the optimal amount of information? How would they divide the burden of collecting

and processing the information?

As another example, consider a group of division heads in some �rm who need to decide

whether to undertake some project, develop a new product, or enter a new market. Because

of the uncertainty regarding the right decision, the division heads may want to carry out a

pilot project that involves all the divisions (e.g., software, hardware, product, marketing, etc.).

While all division heads want to make the right decision, they typically di¤er in the price they

pay in case of a failure (which oftentimes is known only to each manager). Because conducting

a pilot is costly, the managers need to agree on its scale and goals and how to divide the labor

and costs among them. What characterizes the information that the optimal pilot reveals?

How does the rule for deciding on the collective action (e.g. whether undertaking the project

requires the consent of all managers or just a majority of them) interacts with the managers�

decision on the pilot characteristics?

Other examples with similar features include partners in a �rm who need to vote on a

merger or an acquisition and hence, need to agree on which consulting �rm to hire for market

research (and what research it will conduct), or a committee needing to vote on whether to hire

a candidate that deliberates over what information to collect about the candidate. In these

situations and others, it is natural to ask what characterizes the information that the group

acquires? How is the acquired information a¤ected by the fact that the group members will

base their collective decision on it? How does the optimal signal look like, compared to the

case in which the players�preferences are commonly known?

To address these questions, we propose the following stylized model. A group of players

is faced with a binary decision �whether or not to depart from a status-quo (the �default

action�). There are two states of nature, and all players would like the action to match the

state. However, they di¤er in their disutility from a mismatch, and this disutility is privately

observed. Prior to making the binary decision, the players have the opportunity to collectively

acquire a costly public signal about the state. The players then proceed in two steps. First, they

bargain over which signal to acquire and how to distribute its cost. Second, they all observe the

signal realization and vote on the binary decision, where a supermajority is required to depart

from the status-quo. If no information is acquired, all players prefer the status-quo.

Our analysis abstracts from the particular protocol of bargaining over information by follow-

ing Myerson and Satterthwaite (1983) and taking a mechanism design approach to explore the

bounds on the �constrained�social surplus that the group can achieve. That is, we characterize

the optimal feasible mechanism for deciding which signal to acquire, taking into account the

incentive and participation constraints as well as the second stage voting game.
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Within this framework, the following insights emerge. Even if the group members�prefer-

ences were known, the fact that a supermajority vote is required to depart from the status quo

leads to a distortion in the information that is acquired (relative to the unconstrained socially

optimal signal). Furthermore, the higher the supermajority requirement, the lower the social

welfare. When the participants�disutility from making the wrong decision is unobservable, an

incentive to free ride arises in the sense that an individual would want to behave as if infor-

mation is not that important for him so that others will bear its cost. On the one hand, this

further lowers the likelihood of acquiring information (relative to the case in which preferences

are known) and makes the group even more conservative in departing from the status-quo. On

the other hand, when the group does decide to leave the status-quo, it is more con�dent in its

decision (relative to the case of complete information).

The socially optimal bargaining outcome exhibits the following features. In one subset of

the type space, no signal is acquired. In a second subset, the acquired signal is at its optimal

�interior�solution: its structure is optimal given the cost, it attenuates the incentives to free-

ride and it is always instrumental (that is, it always has at least one realization for which the

collective action is di¤erent than if no signal is acquired). In a third subset of the type space the

acquired signal is distorted to be minimally "supermajority-persuasive": it is chosen such that

one of its realizations just ensures a supermajority support for the non-default action. This last

subset illustrates the distortion caused by the presence of a second stage voting game, which is

outside the control of the designer.

In addition to characterizing the solution to the collective bargaining over information, this

paper also contributes to three di¤erent strands of literature. First, our group decision problem

may be viewed as a variant of rational inattention à la Sims (2003). While this literature has

focused exclusively on individual decision makers, in many of the applications the decision is

inherently made by a group (a �rm, a household, etc.). Our paper introduces a framework

of collective rational inattention: A group needs to agree on which signal to acquire, taking

into account the trade-o¤ between the cost and bene�t of more precise information. There

are three key di¤erences between the problem we study and the problem of individual rational

inattention. First, in our setting, the �nal decision following a signal realization is determined

by an equilibrium in a game. Second, the group members may disagree on the bene�t from

each signal. Finally, in order to aggregate the individuals�willingness to pay for signals, the

individuals need to disclose their private information.

Second, we expand the scope of the information design literature by introducing a new

design problem with the following features: (i) the �receivers� themselves have to choose the

optimal information structure (i.e., there is no �sender�), (ii) the optimal information structure

depends on the receivers�private types, and (iii) information is costly.
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Finally, this paper introduces a new type of public good provision problems. In our set-up

the pubic good is information: each player bene�ts from the public signal, but prefers others

to bear its cost. However, unlike a standard public good problem, here, the public good (the

signal) does not directly produce utility for the agents, but it is instrumental to making a

more informed choice in a subsequent game (the voting game). Additionally, in contrast to a

�classical� public good, in our model the players do not necessarily agree on the ranking of

(noisy) signals, even when the cost is ignored (although they all agree that full information

is the best signal). This is because they may disagree on the optimal collective action for

each realized posterior belief. Lastly, the public good in our framework is a multi-dimensional

object. Nevertheless, we manage to �map�the problem back to one that can be solved using

Myersonian techniques.

Related literature. Asmentioned above, our analysis combines information-design with mechanism-

design. In a linear environment with a single player, Kolotilin et. al (2017) showed that the

optimal signal can be implemented without relying on the player�s private information. How-

ever, it is well known that in environments with multiple interacting players (as in Bergemann

and Morris, 2013, Alonso and Câmara, 2016, Taneva, 2019, and Mathevet, Perego and Taneva,

2020) ignoring the players�private information is suboptimal. Candogan and Strack (2021) show

that when there are more than two possible actions, ignoring the player�s private information

is suboptimal even if there is only one receiver.

Several recent works have addressed the problem of designing information for a group of

voters. Notable papers include Wang (2013), Schnakenberg (2015), Alonso and Câmara (2016),

Bardhi and Guo (2018), Chan et al. (2019) and Arieli and Babichenko (2019). These studies

characterize the signal that maximizes the probability that in equilibrium voters vote on the

outcome favorable to the sender. They di¤er in whether the designed signals are private or

public, and in the class of voting rules that is considered. There are two key di¤erences between

these papers and ours. First, in these papers the voters�state-dependent utilities are commonly

known (i.e., voters have no private information), and hence, in order to design the optimal

signal there is no need to elicit information from the voters. Second, in these papers signals

are costless, and the problem is to �nd the signal that induces voters to coordinate on an

equilibrium which is best for the sender.

The question we study is also related to the problem of designing voting rules that incentivize

the voters to acquire costly information. Persico (2004) characterizes the optimal size and voting

threshold that e¢ ciently aggregates information when each voter needs to incur a cost to acquire

a private binary signal. Gershkov and Szentes (2009) extend the analysis to a broader class of

voting mechanisms. Our approach di¤ers in that voters�willingness-to-pay for information is

private and the signal they acquire is public. We �x the voting rule and look for the optimal
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signal, taking into account that this signal depends on the voters�private information, and

taking into account that the signal realization a¤ects voting behavior. Relatedly, Godefroy and

Perez-Richet (2013) study a model where in the �rst stage a group of asymmetrically informed

individuals vote on whether to acquire full information on their payo¤s from a proposal and,

if information is acquired, they proceed to vote on the proposal. They show that likelihood of

remaining with the status quo increases with the supermajority requirement in the �rst stage

and decreases with the supermajority requirement in the second stage.

An alternative approach to the study of collective information acquisition is analyzed by

Chan et al. (2018). They consider a dynamic model where in each point in time a group

receives an exogenous signal and needs to vote on whether to stop and vote on a binary action,

or continue and receive additional signals. Unlike us, they study a stopping problem in which

the signal is exogenously given and the players�preferences are commonly known.1 Relatedly,

Gersbach (2000) considers a group with known preferences who can either accept a policy with

no information or defer the vote on the policy after the state is realized.

Finally, our paper contributes to the literature that examines how strategic players free-ride

on the information acquisition of others (see, e.g. Bolton and Harris, 1999, Bergemann and

Välimäki, 2000, Décamp and Mariotti, 2004 and more recently, Aghamolla and Hashimoto,

2020). The key di¤erence is that in all of these works, agents privately decide either to ac-

quire costly information (for example by investing in R&D or assessing the pro�tability of an

industry), or to wait and learn from the actions of other players. In contrast, in our work the

players jointly decide on what public signal to acquire and free riding occurs by pretending that

information is less valuable. In addition, our innovation is that we characterize the socially

optimal information structure, and identify the optimal implementable information structures

when players�types are private.

Outline. The remainder of the paper is organized as follows. Section 2 presents the model,

solves the central-planner benchmark and provides an illustrative example. The mechanism-

design problem is presented in Section 3 and solved in Section 4. The latter section contains

the lion�s share of the theoretical analysis. We provide an intuitive summary of the main steps

of the analysis at the beginning of the section, to allow readers who are more interested in the

qualitative form of the solution to skip directly to Section 5. In Section 6 we discuss some

key ingredients of our model and the challenges involved in extending our framework in several

directions. Concluding remarks are presented in Section 7. All proofs are relegated to the

appendix.

1For additional related works that take a collective search approach to sequential information gathering by
a group, see the references in Chan et al. (2018).
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2 Model

Our model consists of the following components.

Players and payo¤s. There are n players who have to jointly agree on a decision a 2 f0; 1g.
Following the literature on strategic voting (most notably, Feddersen and Pesendorfer, 1998),

we assume that each player�s payo¤ from the collective action, ui, depends on the joint action,

on his type �i 2 � and on the state of the world ! 2 f0; 1g as follows:

ui(a; !; �i) =

8><>:
1 if a = !

�i if a = 1; ! = 0

1� �i if a = 0; ! = 1

Each player has quasi-linear preferences over the collective action and any additional costs he

incurs.

We assume that the players do not observe the realization of ! and have the common prior

belief that the probability of ! = 1 is p. In addition, each player i privately and independently

draws a type �i from a common distribution F on the interval [0; 1� p] (we explain below why
we assume that �i � 1 � p). We assume that F admits a density f that is strictly positive,

continuously di¤erentiable and bounded over [0; 1� p]. Let v (�i) � �i � (1� F (�i)) =f (�i)
denote the virtual valuation of the player�s type �i. We assume that F is regular, i.e. v (�i) is

increasing in �i.2

Our speci�cation of the utility function ui implies that player i weakly prefers the joint

decision a = 1 if and only if, given any information he has, his posterior belief on ! = 1 is at

least 1 � �i. This follows from observing that if the posterior belief on ! = 1 is r, then the

action a = 1 yields an expected payo¤ of r � 1 + (1� r) � �i whereas the action a = 0 yields an
expected payo¤ of r � (1� �i) + (1� r) � 1. From our assumption that p � 1 � �i for every �i,
it follows that without further information on the state each player prefers the action a = 0.

This gives a clean benchmark that without additional information the group remains with the

status-quo.

Costly Signals. Before making the joint decision (in a manner described below), the players
have the opportunity to acquire a public signal on the state !. A signal can be represented

by a probability distribution over posterior beliefs on ! = 1, such that the expected posterior

belief on ! = 1 equals the prior p.3 To simplify the exposition we assume that the distribution

2The assumption that F is regular simpli�es the analysis of the mechanism design problem that we introduce
later. It is a standard assumption in the mechanism design literature, where it guarantees that the solution to the
design problem satis�es a monotonicity condition that ensures incentive compatibility. In our setting, regularity
helps us prove that indeed the solution to our design problem satis�es a similar monotonicity condition.

3In our collective decision-making setting, there is no loss in representing a signal as a distribution over
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is discrete, with �nitely many possible realizations.4 We denote by qj the probability that the

posterior belief on the state ! = 1 is rj and by J the total number of posteriors. We then have:X
j2f1;:::;Jg

qj � rj = p, (1)

where 0 < qj � 1 and 0 � rj � 1 for all j 2 f1; :::; Jg, and
P

j2f1;:::;Jg qj = 1. The players can

decide to acquire no information. This option is equivalent to choosing the degenerate signal

J = 1, q1 = 1 and r1 = p.

Acquiring and/or analyzing signals is costly. Following the rational inattention literature (in

particular, the posterior-based approach of Caplin, Dean and Leahy, 2020), we assume that a

signal�s cost is a function of the induced distribution over posterior beliefs. For now we assume

only that given J; the cost function c
�
f(qj; rj)gJj=1

�
is twice continuously di¤erentiable and

monotone with respect to the Blackwell ordering, and that acquiring no information is costless

(for our main characterization result we will impose additional structure). For concreteness,

and to be able to give illustrative examples, we will occasionally use a cost speci�cation that

is proportional to the mutual information between the signal realization and the state. That

is, the cost of the signal f(qj; rj)gJj=1 will be given by the expected KL-divergence (or relative
entropy) between the posteriors and the prior:

c
�
f(qj; rj)gJj=1

�
= � �

PJ
j=1qjDKL(rjjjp) (2)

where � is some positive constant, and:5

DKL(rjjr0) � r log
r

r0
+ (1� r) log 1� r

1� r0 . (3)

This speci�cation captures situations where there is an overwhelming amount of information

available and the di¢ culty is in processing and understanding that information (see, e.g.,

Máckowiak, Matµejka and Wiederholt, 2018). As is well known, the cost function given by

(2) is monotone with respect to the Blackwell ordering. However, our analysis applies to a

posteriors that average to the prior belief. First, as long as the mean posterior equals the prior, there is some
signal that generates the distribution over posteriors. Second, our preference speci�cation implies that voting for
a = 1 is dominant for type �i if and only if the realized posterior is at least 1� �i: Thus, for a given tie breaking
rule, each player�s decision, and hence the �nal outcome, is pinned down by the realized public posterior.

4We can extend the analysis to signals with in�nitely many realizations (posteriors). Apart for a¤ecting
notations, this requires a change only in the proof of Lemma 1, where instead of merging a pair of posteriors,
we need to merge all the posteriors above 1� �(n�m+1); and all the posteriors below 1� �(n�m+1):

5Since there are only two states, we represent a distribution over the states by the probability on ! = 1.
Thus, the divergence between two distributions can be written as a function of the probabilities that each
distribution puts on the state ! = 1.
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broader class of cost functions (P1-P3 in Section 4.2 give the general su¢ cient conditions on

the cost function). For example, it is easy to verify that these conditions are also satis�ed by

a cost function that is proportional to the variance of the induced posteriors on the high state.

The cost of the signal has to be covered by the players. We denote by ti the cost borne by

player i, so that
Pn

i=1ti = c
�
f(qj; rj)gJj=1

�
. Thus, the net payo¤ of type �i from action a in

state ! is given by ui(a; !; �i)� ti.
The assumption that the cost of information can be shared among the players (or, that

players can compensate each other using another sort of transferable utility) is crucial for our

analysis. Sharing this cost can be interpreted, for example, as sharing the monetary cost of the

signal (e.g., when di¤erent departments in a �rm use their budgets to pitch in for the cost of

hiring a consultant); or as reallocating chores, consumption or resources (e.g. in a household

or a �rm); or as sharing the collective e¤ort of processing the acquired information (e.g., the

amount of documents that needs to summarized, or the time involved in organizing the data).

Agreeing on a signal. The group members decide which signal to acquire and how to

distribute the costs through some form of bargaining. In doing so they take into account that

each of them has private information and that the signal realization will a¤ect the decision

on the collective action. As we explain in the next section, our analysis will not be tied to

any particular bargaining protocol. Instead, we will take a mechanism design approach for

characterizing the bargaining outcomes that maximize the constrained social surplus.

We assume that when a player refuses to take part in the discussion of what signal to

acquire, he prevents the group from making a decision on the signal. This assumption, which

is typical in almost all public good settings (e.g., Mailath and Postlewaite, 1990 and Hellwig

2003), e¤ectively means that each player has veto power with respect to acquiring the public

signal. Notice that, with no additional information the group will stick with the status quo.

For instance, recall the example of several department heads that need to agree on a pilot

study. If the pilot requires experts from every department (software, hardware, etc.) then any

department head can block the pilot by refusing to allocate manpower. With no pilot, the �rm

will not undertake the project. Hence, by opting out from bargaining a player expects to get

the payo¤ of the status-quo option. This assumption is helpful for tractability since it �xes the

payo¤ of the outside option of a player in a way that is independent of the other participants.

We further discuss this assumption in Section 6.2.

Voting. After the players observe the realization of the public signal (if one is acquired), they
vote on the collective decision using an m�majority rule: the action a = 1 is chosen if, and

only if, at least m players vote for this option. Otherwise, the default action a = 0 is chosen.

We assume that the players do not choose weakly dominated strategies. In addition, whenever

a player is indi¤erent between a = 1 and a = 0, he breaks ties in favor of a = 1. Thus, player i
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votes for a = 1 if and only if the realized posterior belief that the state is ! = 1 is above 1� �i.
Consequently, the alternative a = 1 is chosen if and only if the realized posterior belief that the

state is ! = 1 is above 1 � �(n�m+1), where �(k) is the kth smallest element in �. For example,
if choosing the non-default action a = 1 requires unanimity, i.e. m = n, then for this action to

be chosen the realized posterior belief has to be larger than 1� �(1), where �(1) is the smallest
element in �. Note that, given � = f�1; :::; �ng, a signal induces a probability distribution over
the outcomes of the vote.

We assume the group members cannot make any transfers that are conditional on their

votes. This can follow from institutional constraints that prohibit such vote buying, or because

the votes are secret, or because such contractual arrangements cannot be enforced (the case

of contractible votes is covered by the central-planner benchmark below). In light of this, the

group members can only bargain over what information to acquire (and not simultaneously on

both the information and the ultimate action). We therefore take the voting stage as given,

while allowing for any supermajority requirement.

Optimal bargaining outcome. Note that the players�preferences are quasi linear and that
the signal realization fully determines the voting outcome. It follows that the ex-ante social

surplus that is induced by a mapping from types to signals equals the sum of the players�ex-

ante expected utilities, where utilities are evaluated according to the equilibrium outcome in

the ensuing voting game. We say that a bargaining protocol is socially optimal if the mapping

it induces from types to signals maximizes the ex-ante social surplus.

Our model strikes a compromise between being su¢ ciently simple to analyze while being

su¢ ciently general to accommodate a broad range of situations.6 In Section 6 we discuss the

role of some key features of our model in the analysis, suggest possible directions for extending

the model and explain the technical challenges involved in pursuing them.

6In our intra-household bargaing example, both partners have to agree on the decision at hand (hence
voting requires uninamous agreement). In addition, both partners have to agree how much e¤ort to put into
collecting information relevant to the decision, and this information is clearly observable to both. In line with
our model, an extensive literature on intra-household bargaining argues that household members have con�icting
preferences, which are not commonly known, and that the bargaining involves exchange of �transfers�(either in
the form of consumption or taking up chores). See, e.g., Ashraf et. al (2014,2021) and Doepke and Kindermann
(2019). Obviously, any such transfers between the partners can be used to compensate for the e¤ort of seeking
information, but cannot be used to convince a partner to have a baby when she doesn�t want to, or to send the
child to a bad public school.
In our department heads example, our model is consistent with situations in which the �rm would undertake

some project only if a majority of the department heads support it. Conducting a pilot project is oftentimes
costly, requires a joint e¤ort from all departments and its outcome is publicly observed. Indeed, a department
head may be skeptic about the bene�t of the pilot, but she may be willing to go ahead with it if she is appro-
priately compensated, for example by temporarily allocating manpower or other resources to her department.
However, if after a pilot is run, the department head is still not convinced that the project is worth undertaking,
it is unlikely that any transfer will persuade her to risk her reputation for what she thinks would end up as a
devastating failure.
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Figure 1: Feasible signals

2.1 Simplifying the domain of signals

Our �rst observation is that signals that induce only two posterior beliefs on ! = 1 (one on

either side of the prior belief) dominate signals with more posterior beliefs on ! = 1:

Lemma 1 For any signal that induces more than two posterior beliefs, there exists a signal
that induces only two posterior beliefs, generates the same distribution over actions for each

realization of state and types and has a strictly lower cost.

This result is straightforward in standard information design problems where signals are

costless. In such settings all that matters is the distribution over the actions in each state, and

this distribution can be replicated by signals that induce two posterior beliefs when there are

only two actions. In our setup, signals are costly and the cost depends on the entire distribution

of posteriors. However, our assumption that the cost increases in Blackwell informativeness

implies that the optimal mechanism does not need to employ signals with more than two

posteriors (for an analogous result in a model of individual rational inattention see, e.g., Lemma

1 in Matµejka and McKay, 2015).

In light of this observation, we restrict attention to signals that induce at most two posterior

beliefs.7 Thus, a signal can be represented by a pair (q; rH), where q 2 [0; 1] is the probability
that the posterior belief on ! = 1 is rH � p. Equation (1) then implies that with probability
1� q the other posterior belief induced by the signal is rL � (p� qrH)=(1� q) � p. Thus, when
the realized posterior belief is rL all players agree that the optimal action is a = 0. When the

7Because the players are risk neutral, if we switch from a signal with more than two posteriors to a cheaper
signal that induces only two posteriors, it is possible to re-adjust the transfers between the players such that the
decrease in cost is translated into a constant reduction in the interim payment of each player. This modi�cation
maintains ex-post budget balance, incentive compatibility and interim individual rationality.
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realized posterior belief is rH there are m players who prefer a = 1 over a = 0 if and only if

rH � 1� �(n�m+1). Notice that, since rL � 0, then it must be the case that p � qrH . Figure 1
illustrates the set of all possible signals, depicted on the plane of q and rH .

Choosing q = 0 or q = 1 is equivalent to purchasing no signal. The cost in this case is 0 by

assumption. We say that a signal is informative if q 2 (0; p=rH ] and rH > p. We say that a

signal is instrumental for a type pro�le � if at least for one of the signal�s realizations there is an

m�majority for the non-default action a = 1. This means that a signal (q; rH) is instrumental
for � if rH � 1� �(n�m+1) and q 2 (0; p=rH ].

2.2 A Central Planner Benchmark

To better understand the implications of the players�private information and the super-majority

requirement for departing from the status quo, we begin by analyzing the benchmark where a

central planner, who knows the players�types, chooses both the socially optimal signal and the

collective action as a function of the signal realization.

Given a type pro�le �, let � = 1
n

Pn
i=1 �i denote the average type in �. Clearly, if the planner

acquires a signal, it is necessarily instrumental: The posterior rH has to lead to the action a = 1

and the posterior rL has to lead to a = 0 (otherwise, the players incur a cost but ignore the

information). The expected per-capita social welfare from purchasing an instrumental signal

(q; rH) for the type pro�le � is given by:

q �
�
1 � rH + � � (1� rH)

�
+ (1� q) �

��
1� �

�
rL + (1� rL)

�
� 1

n
c (q; rH) . (4)

This expression is a sum of three terms. The �rst term is the total per-capita welfare when

the posterior rH is realized, which occurs with a probability q. Since the planner takes the

action a = 1 in this event, the per-capita payo¤ is 1 with probability rH , and is � with the

complementary probability. The second term is the total per-capita welfare when the posterior

rL is realized, which occurs with probability 1� q. In this case, the action a = 0 is taken. The
third term is the per-capita cost.

Alternatively, if the planner does not acquire any signal, the players remain at the prior

beliefs and the planner takes the action a = 0. In this case, the per-capita social welfare is

1 � p�. The planner acquires information if the signal (q; rH) that maximizes (4) achieves a
social welfare above 1� p�.
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Assuming the cost function is given by Equation (2), the planner�s solution is:8

rH =
e
n
� � en� �

e
n
� � 1

; rL = min

(
e
n
�(1��) � 1
e
n
� � 1

; p

)
; q =

p� rL
rH � rL

. (5)

This implies that a signal is acquired whenever rL < p; which occurs if � > 1��
n
ln
�
p
�
e
n
� � 1

�
+ 1
�
.

The socially optimal signal structure exhibits the property that both rH and rL are decreas-

ing in �, whereas q is increasing in �. To get some intuition for this, note that when the average

type is higher, the social disutility from taking the action a = 0 when the state is ! = 1 is

higher. At the same time, the disutility from making the opposite mistake is lower. Therefore,

when the average type is higher, the action a = 1 is socially more desirable, which suggests that

q should be higher. For the same reason, higher types, who are biased towards action a = 1; are

willing to sacri�ce a reduction in rH (which lowers the con�dence that a = 1 is the right action

when this posterior is realized) to obtain a reduction in rL (which raises the con�dence that

a = 0 is the right action when this posterior is realized). Of course, the precise argument for

the comparative statics of the signal with respect to the type pro�le also depends on properties

of the cost function. Su¢ cient conditions for these comparative statics are provided in Section

4.2.

The socially optimal signal also changes in an intuitive way as �, the scaler of the cost

function, changes:

Proposition 1 Assume the cost function is given by Equation (2). Let � be a type pro�le and
�L < �H be two levels of the scaler of the cost function such that a signal is acquired for � at

both scaler levels. Then the signal for �L is more Blackwell informative than the signal for �H :

Furthermore, at the limit, as � ! 0; the socially optimal signal that is acquired for any type

pro�le converges to the fully informative one.

2.3 An illustrative example

To illustrate what forces are at work in the absence of a central-planner, consider the following

example. Suppose there are only two players (i.e. n = 2), p = 0:5 and the cost function is given

by Equation (2) with � = 0:5.

The central planner benchmark. Suppose �rst that there�s a central planner, as described
above. For the type pro�le � = (0; 0) the planner�s decision is straightforward: Since the action

a = 0 dominates the action a = 1 for both players in each state of the world, implementing a = 0

8These equations are directly obtained from the �rst-order conditions of the planner�s problem, which are
also given by (FOCq) and (FOCr) in Section 4.2 for the case of w = �. Also, notice that since � � 1 � p then
rH 2 (p; 1).
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without acquiring any information is optimal. In contrast, for the type pro�le � = (0:5; 0:5)

acquiring some information is bene�cial for both players. A computation shows that the signal

q = 0:5 and rH � 0:88 maximizes (4) and is better than acquiring no information.

Now suppose that the type pro�le is � = (0; 0:5). In this case, player 1 (weakly) prefers the

action a = 0 regardless of the state of the world, whereas player 2 prefers the action a = 1 when

his posterior belief on the state ! = 1 is greater than 0:5. The planner, who is not concerned

with the preferences of each player individually but rather with the aggregate social surplus,

chooses the signal that maximizes (4), provided that it is better than acquiring no information.

A computation shows that this signal is given by q � 0:24 and rH � 0:97. Intuitively, the

social harm from a mismatch when a = 1 is greater for the type pro�le (0; 0:5) compared to

the type pro�le (0:5; 0:5). Thus, the optimal signal for (0; 0:5) leads to adopting a = 1 with a

lower probability (0:24 < 0:5), but whenever a = 1 is taken, it is done with greater con�dence

(0:97 > 0:88).

A supermajority voting rule. Suppose now that there�s no planner and the players vote on
the collective action. Suppose further that a = 1 requires a unanimous agreement (m = 2). For

now, retain the assumption that types are commonly known. It is easy to verify that for the

type pro�les (0; 0) and (0:5; 0:5), where the players�interests are perfectly aligned, the optimal

signals are the same as those purchased by the planner.

Consider now the asymmetric pro�le (0; 0:5). In this case, the socially optimal signal (q =

0:24; rH = 0:97) is too weak to persuade player 1 to vote for a = 1. In other words, this

signal is not instrumental and is therefore useless: player 1 will thwart any attempt to deviate

from the status quo, regardless of the signal�s realization, even when a = 1 is the socially

optimal action. Indeed, when � = (0; 0:5) and a unanimous agreement is required, only signals

with rH � 1 � min (0; 0:5) = 1 are su¢ ciently strong to persuade the two players to vote for
a = 1 when the posterior rH is realized. The optimal signal in this case is q � 0:21,rH = 1.

Notice that this signal is distorted compared to the socially optimal one in order for the signal

to be instrumental. This observation raises a question: How does the voting stage a¤ect the

optimal signal in the more general case, and how does the distortion depend on the required

supermajority?

The asymmetric information distortion. Assume now that the players�types are private
information. Would the players agree to disclose their types if they knew that the optimal signal

will be acquired? While addressing this question requires some more involved computations, it

is not too di¢ cult to show that the answer is negative. Perhaps not surprisingly, the players may

be tempted to free-ride on each other by pretending to be a lower type, in order to reduce their

share in the signal�s cost. Indeed, as in the case of "standard" mechanism design, it is possible

to weaken the players�incentives to free-ride on each other by distorting outcomes away from
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their e¢ cient level (that is on top of the distortion required to make the signal instrumental).

Given the parameters of the example, assuming that the distribution F is uniform and letting

m = 2, it can be showed that it is (ex-ante) optimal not to acquire any signal when the type

pro�le is � = (0; 0:5).9 But what is generally the optimal way to distort a signal which is a

multidimensional object?

3 A mechanism for information acquisition

As explained in the Introduction, to characterize the constrained e¢ cient frontier of signals

that can be acquired through bargaining, we take a mechanism design approach that abstracts

from any particular bargaining protocol.10 By �constrained e¢ cient�we mean that we take

as given the ensuing voting game, which may lead to outcomes that are not socially e¢ cient

ex-post.

In our setting, there is no loss of generality in restricting attention to direct revelation

mechanisms in the �rst stage of the players�interaction, i.e., when they decide on which signal

to acquire.11 We de�ne an actual direct mechanism to be a vector of functions hq; rH ; t1; :::; tni,
where q : �n ! [0; 1] ; rH : �n ! [p; 1] and ti : �n ! R for every i 2 f1; ::; ng such
that

Pn
i=1ti (�) = c (q (�) ; rH (�)). Thus, following a pro�le of reports �̂ = (�̂1; :::; �̂n), with

probability q(�̂) the players end up with the posterior probability rH(�̂) on the state ! = 1 and

with probability 1� q(�̂) they end up with the posterior probability rL(�̂) on that state, where
rL(�̂) � (p � q(�̂) � rH(�̂))=(1 � q(�̂)). In addition, each player i pays ti(�̂). We say that an
actual mechanism is optimal if it maximizes the expected social surplus, taking into account

the equilibrium of the subsequent voting game.

In the actual mechanism the designer cannot directly control the outcome of the second

stage voting game because the group members cannot commit in advance how they would

vote following any possible realization of the signal. Thus, a player who misreports his true

type to the mechanism (say, in order to reduce his share in the cost) retains his ability to

vote according to his true preferences in the second stage. As a step towards characterizing

the optimal mechanism, we proceed by considering auxiliary (direct) mechanisms in which, in

addition to choosing which signal to acquire and how to distribute the costs, the mechanism also

votes on behalf of the players in the second stage. Thus, an auxiliary mechanism e¤ectively

chooses the collective action a = 1 whenever rH � 1 � �̂(n�m+1), and the collective action

9This observation previews a result that will be formally presented in Corollary 2 below.
10That is, there is no �real�designer. The mechanism here is used as a methodology for characterizing the

limits of the what the players can achieve by any protocol of bargaining
11Note that the mechanism is used only to select the public signal, and not the collective action, and hence,

the revelation principle follows from standard arguments.
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a = 0 otherwise. In other words, we assume that the players commit to vote according to their

reported types and not their true types.12 Our focus on direct auxiliary mechanisms follows

from the revelation principle which holds in this environment.13

Formally, an auxiliary mechanism is an actual mechanism augmented by two decision func-

tions, aH(�̂) and aL(�̂), which are the collective actions chosen by the mechanism when the

posterior beliefs rH and rL are realized, respectively. Thus,

aH(�̂) =

(
1 if rH(�̂) � 1� �̂(n�m+1)

0 otherwise
(6)

aL(�̂) = 0 (7)

The highest expected surplus achievable by an auxiliary mechanism is weakly higher than

the highest expected surplus achievable by an actual mechanism. This is because any equilib-

rium play path in the actual mechanism and the ensuing voting game can be replicated by the

auxiliary mechanism. The reason is that deviations from truth-telling in the auxiliary mecha-

nism are more costly than in the actual mechanism. In light of this, we begin by looking for

the auxiliary mechanism that attains the highest social surplus. We will then show that the

equilibrium that attains this surplus can be replicated by an actual mechanism and the ensuing

voting game.

Fix a player i and suppose that the remaining players report their types truthfully. The

expected utility of player i of type �i who reports �̂i is then given by:

V (�i; �̂i) = E��i
h
q(�̂i; ��i) �

�
rH(�̂i; ��i) � u(aH(�̂i; ��i); 1; �i) + (1� rH(�̂i; ��i)) � u(aH(�̂i; ��i); 0; �i)

�
+ (1� q(�̂i; ��i)) �

�
rL(�̂i; ��i) � u (0; 1; �i) + (1� rL(�̂i; ��i)) � u (0; 0; �i)

�
� ti(�̂i; ��i)

i
(8)

where ��i 2 �n�1 represents the vector of true types of all players other than i, and E��i is
evaluated according to the probability distribution of the true types ��i.

Since we are interested in the auxiliary mechanism that maximizes the total surplus (subject

to the voting stage), it is useful to represent the players�payo¤s as the expected gain from

information (rather than the utility per-se) compared to the case in which the players do not

participate in the mechanism and no information is acquired. Note that in the latter case, the

12Notice that while auxiliary mechanism can decide on the collective action in contrast to the actual mecha-
nism, it is still constrained in how it maps types to collective actions. For example, it cannot force the action
a = 1: For any signal that is acquired, when rL is realized, it must choose a = 0.
13Note that the auxiliary mechanism is a standard mechanism in the sense that it maps reports to �nal

outcomes, and hence, the revelation principle applies.
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default action a = 0 is chosen and type �i�s payo¤ is p � (1� �i) + (1� p). Thus, the gain from
information of type �i of player i who reports �̂i is given by:

U(�i; �̂i) = V (�i; �̂i)� (p � (1� �i) + (1� p)) (9)

To simplify the exposition, when all players report truthfully, we denote U (�i) � U(�i; �i).
The objective of the mechanism is to maximize the total ex-ante expected gain from signals

under truthful reporting, and taking as given the ensuing voting game:

nX
i=1

E�iU (�i) . (OBJ)

The auxiliary mechanism has to be ex-post budget balanced: the cost of any signal that

is acquired has to be fully covered by the players. In what follows we slightly weaken this

requirement and allow the auxiliary mechanism to be balanced only ex-ante, so that the cost

of the acquired signal has to be covered only on average (that is, we allow the mechanism to

have a budget de�cit in some cases, so long as on average the costs are fully covered):

E�
nX
i=1

ti (�) = E� [c (q (�) ; rH (�))] (BB)

However, as is well known (see, e.g., Borgers, 2015, p.47), if a mechanism is ex-ante budget

balanced, one can modify the transfers to satisfy ex-post budget balanceness without a¤ecting

the interim expected transfers or the incentives for truthful reporting. That is, if a mechanism is

incentive-compatible, individually rational and ex-ante budget balanced, then there is another

mechanism that achieves the same allocation of types to signals, and which is also incentive-

compatible and individually rational but is ex-post budget balanced. In light of this, we will

focus on ex-ante budget-balance in the analysis that follows.

The players cannot be forced to participate in the mechanism. Since when a player opts

out, he gets the payo¤ of the status-quo option (evaluated according to the prior belief), then

the gain from participation must be non-negative for any type �i of any player i:

U (�i) � 0. (IR)

Finally, to guarantee that truthtelling is indeed an equilibrium, the following incentive

compatibility condition must hold:

U (�i) � U(�i; �̂i) (IC)

for any type �i of any player i, and for any report �̂i.

In sum, we look for an auxiliary mechanism that maximizes (OBJ) subject to the constraints

(IR), (IC) and (BB).
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4 Solving the design problem

In this section we characterize the mechanism which maximizes the ex-ante social surplus

(taking into account how the signal a¤ects the ensuing voting game). While the mechanism

design problem we study is not a conventional one, we nevertheless are able to reduce it to a

problem that is amenable to familiar methods. In the next paragraphs we summarize the main

steps that we take to achieve this, and explain how the reduced problem is solved. Readers

who prefer to skip the detailed theoretical analysis, can go directly to Section 5.

In Section 4.1 we reformulate the designer�s maximization problem. While mechanisms for

selecting multi-dimensional objects are in principle di¢ cult to solve, we show how to transform

our problem into a tractable one. The key step is to show that the auxiliary design problem

can be reformulated to look �almost�like a second-best public good provision problem. In this

problem, for any type pro�le the designer chooses the probability of departing from the status

quo (which is the analog of the quantity of the public good), the division of costs, and an extra

new variable which is the posterior probability that departing from the status quo is the right

decision (which does not have an analog in the conventional public good problem).

In Section 4.2 we introduce a property we call �supermajority-persuasiveness�(SP), which

captures the requirement that any acquired signal must be instrumental for decision-making:

it must have at least one realized posterior for which the collective action is di¤erent than if no

signal was acquired. We then show that the optimal auxiliary mechanism necessarily satis�es

this property. Consequently, supermajority-persuasiveness leads to a distortion in the acquired

signal relative to the socially optimal one: there are type pro�les for which the optimal auxiliary

mechanism chooses a signal that is di¤erent from the signal that would be chosen by a central

planner, and this is even if the type pro�le were commonly known. This occurs when the central

planner�s signal is such that none of its realizations can persuade a supermajority of players

to vote against the status-quo. We then write the auxiliary design problem as a problem of

maximizing a Lagrangian, show that it has a solution and characterize it (Proposition 2). We

show how our solution also applies to two variants of our model: one where types are commonly

known (but there is no central planner) and another where players can also bargain over the

collective decision (i.e. the voting assumption is relaxed). Finally, we illustrate the solution for

the cost speci�cation of mutual information (see Corollary 1).

In Section 4.3 we show that the solution for the optimal auxiliary design problem coin-

cides with the solution of the actual design problem where players vote for the collective action

independently of their reports to the mechanism (Proposition 3). This follows from the obser-

vation that truthtelling is a dominant strategy equilibrium in the optimal auxiliary mechanism

(Corollary 2).
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4.1 Reformulating the design problem

Fix a player i and suppose that all other players �i report truthfully ��i 2 �n�1. If player i�s
report is such that rH(�̂) � 1� �̂(n�m+1), where �̂ = (�̂i; ��i), then player i�s net utility is given
by q(�̂) � (�i � (1 � rH(�̂))) � ti(�̂). If player i�s report is such that rH(�̂) < 1 � �̂(n�m+1) then
no signal is acquired and player i�s net utility is �ti(�̂). Thus, we can rewrite the net utility
of type �i of player i who reports �̂i when all other players report truthfully (Equation 9) as

follows:

U(�i; �̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q
�
�̂i; ��i

�
�
h
�i �

�
1� rH

�
�̂i; ��i

��i
dF n�1 (��i)

�
Z
��i

ti(�̂i; ��i)dF
n�1 (��i)

To express U(�i; �̂i) more compactly, we introduce the following notations. Given a report

�̂i, denote by Q(�̂i) the expected probability that the auxiliary mechanism chooses the action

a = 1. Denote by M(�̂i) the expected probability that the auxiliary mechanism chooses a = 1

but the state is ! = 0 (this is the probability that the auxiliary mechanism deviates from the

default action when it shouldn�t). Denote by Ti(�̂i) the expected payment of player i. Thus:

Q(�̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q(�̂i; ��i)dF
n�1 (��i)

M(�̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q(�̂i; ��i) �
�
1� rH(�̂i; ��i)

�
dF n�1 (��i)

Ti(�̂i) =

Z
��i

ti(�̂i; ��i)dF
n�1 (��i)

The expected net utility of player i with type �i who reports �̂i is then given by:

U
�
�i; �̂i

�
= Q(�̂i) � �i �M(�̂i)� Ti(�̂i) (10)

Note that our speci�cation of the players�utility has the convenient feature that it is as if a

player gets a payo¤ of �i every time the collective action 1 is chosen, but he pays a penalty

(M(�̂i)) that is equal to the probability that this is the wrong collective action.

The designer�s objective function (OBJ) can therefore be written as

nX
i=1

Z 1�p

0

[Q (�i) � �i �M (�i)� Ti (�i)] dF (�i) (11)
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while incentive compatibility (i.e., Equation IC) requires

Q(�i) � �i �M(�i)� Ti(�i) � Q(�̂i) � �i �M(�̂i)� Ti(�̂i)

for all �̂i and �i and every player i. Note that U (�i) is the upper envelope of a family of

a¢ ne functions in �i, and is therefore convex. It follows that an auxiliary mechanism satis�es

incentive compatibility if and only if Q(�i) is non-decreasing and U 0 (�i) = Q (�i) (see, e.g.

Krishna, 2010, p. 64). Thus U (�i) =
R �
0
Q (x) dx�M(0)� Ti(0).

The above allows us to express the auxiliary mechanism design problem in the following

compact form:

Lemma 2 The auxiliary design problem consists of �nding q(�) and rH (�) that maximize the

aggregate surplus,

nX
i=1

Z 1�p

0

[�i �Q(�i)�M(�i)] dF (�i)�
Z
�

c(q(�); rH(�))dF
n(�), (12)

subject to the following constraints: (i) Q(�i) is monotone and (ii) the aggregate virtual surplus

is non-negative,

nX
i=1

Z 1�p

0

[v(�i) �Q(�i)�M(�i)] dF (�i)�
Z
�

c(q(�); rH(�))dF
n(�) � 0. (13)

This inequality is both necessary and su¢ cient for individual rationality and ex-ante budget

balance.

The monotonicity of Q(�i) is necessary for incentive-compatibility, while the non-negativity

of the aggregate virtual surplus follows from the IR constraint after we impose budget-balance

and employ transfers that induce incentive-compatibility. For further details, see the proof in

the appendix.

We refer to an auxiliary mechanism that employs the functions q(�) and rH (�), which solve

the design problem described in the lemma, as an optimal auxiliary mechanism:

We have therefore transformed the design problem of acquiring the (ex-ante) welfare max-

imizing signal and covering its cost into a problem of choosing a welfare maximizing public

good and covering its cost, but with the following �twists�. First, the public good is multi-

dimensional: it is a distribution over posterior beliefs, which can be summarized by a pair of

numbers, the high posterior rH and the probability q of realizing it. Second, unlike a stan-

dard problem of public good provision, the characteristics of the public good a¤ect the players�
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actions in a game that is played after the good is provided. Third, unlike a �textbook�pub-

lic good problem, here, the players do not necessarily agree on the ranking of (noisy) signals,

even when the cost is ignored. This follows from the players�possible disagreement on the

optimal collective action for each realized posterior belief. Finally, in a �conventional�public

good problem, the cost of the optimal level of the public good increases in types. This is not

necessarily true in our set-up: even when types are known, the cost of the optimal signal is not

necessarily monotone in the types.14

4.2 Characterizing the optimal auxiliary mechanism

Assigning a type pro�le � to an informative signal that will not result in a supermajority vote

for a = 1 no matter what posterior is realized is wasteful: The players incur a cost, but do

not change their behavior relative to having no signal. We therefore introduce the following

property:

De�nition 1 (supermajority-persuasiveness, SP) A signal (q; rH) is supermajority-persuasive
(SP) for the type pro�le � if q 2 (0; p=rH ] and rH � 1 � �(n�m+1): An auxiliary mechanism is

SP if almost every informative signal that it acquires is SP.

We then have that:

Lemma 3 The optimal auxiliary mechanism is SP.

While it may seem intuitive that an optimal mechanism should be SP, note that in principle,

a mechanism can achieve ex-ante optimality by committing to non-optimal interim actions (as

in Myerson and Satterthwaite, 1983). This is because non-optimal actions can lower the players�

incentives to misreport their types, and hence lower the information rents required to support

truth-telling. However, in our model, information rents depend solely on the distribution over

outcomes and not on the (cost of the) acquired signal. Thus, not buying a signal induces the

same distribution over outcomes as buying a non-instrumental signal. It follows that buying a

non-instrumental signal wastes resources but is not helpful in decreasing information rents.

14For example, assume the cost function is given by (2) and suppose that n = 20, � = 3, p = 0:4 and that
the players�types are commonly known. When all players�types are 0:4 then the cost of the optimal signal is
~1:45, when all players�types are 0:55 then the cost of the optimal signal is ~1:58 and when all players�types
are 0:6 the cost of the optimal signal is ~1:56 (regardless of the required supermajority). The intuition for this
non-monotonicity is that a high type has a lower disutility from taking a = 1 when ! = 0: Hence, when types
are high, it is socially optimal to save on costs by lowering rH (which is the likelihood that a = 1 is the optimal
action). Whether or not the cost savings from rH outweighs the additional cost from increasing q (which is
monotone in types) depends on the particular type pro�les and the cost speci�cation. Nevertheless, it is easy to
verify that this non-monotonicity can also arise when the cost is equal to the variance of the posterior beliefs.
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By Lemma 3, an optimal auxiliary mechanism solves the constrained optimization problem

de�ned in Lemma 2 subject to an additional constraint that the mechanism is SP. If for a

particular type pro�le � the acquired signal satis�es that rH (�) = 1� �(n�m+1) (i.e., the �mar-
ginal�decisive voter is indi¤erent between the two collective actions), we say that the signal

is minimally-supermajority-persuasive (MSP) for that pro�le, or that at the pro�le �, the SP

constraint is binding.

Since in an optimal auxiliary mechanism q (�) = 0 whenever rH (�) < 1� �(n�m+1), we can
simplify the expressions of Q(�i) and M(�i) as follows:

Q(�i) =

Z
��i

q(�i; ��i)dF
n�1 (��i) (14)

M(�i) =

Z
��i

(1� rH(�i; ��i)) � q(�i; ��i)dF n�1 (��i) (15)

To solve the design problem given in Lemma 2, we start by ignoring the monotonicity

constraint on Q (�), and later verify that the solution to this relaxed problem actually satis�es

this ignored constraint.

Finding the two functions q (�) and rH (�) that maximize the social surplus (12) is, formally, a
problem of �nding the maximum of a mapping from the domain of (pairs of) integrable functions

to the reals. In addition, the problem includes a constraint �that the aggregate surplus be

non-negative (13). Since this constraint takes the form of an integral, the problem can be solved

as an isoperimetric one, using techniques from the calculus of variations (see, e.g., Kamien and

Schwartz, 2012, part I, section 7, p.48). Speci�cally, it is possible to append the constraint to

the objective with a Lagrange multiplier, and derive the necessary conditions for the optimum

by maximizing the augmented integral (just as in a �standard�calculus optimization problem).

By the Lagrange su¢ ciency theorem, these conditions are also su¢ cient, provided that a feasible

solution exists (for details see the proof of Proposition 2).

The Lagrangian associated with maximizing Equation (12) under the constraint (13) is given

by:15

L =
Z
�

�
w (�; �) � q(�; �)� (1� rH(�; �)) � q(�; �)�

1

n
� c(q(�; �); rH(�; �))

�
dF n(�) (16)

where

w(�; �) =
1

n

nX
i=1

�
1

1 + �
�i +

�

1 + �
v(�i)

�
. (17)

15To obtain the Lagrangian L (�), write the aggregate surplus given by Equation (12) plus � times the
aggregate virtual surplus given by Equation (13). Now plug in the expressions for Q(�i) and M(�i) given by
Equations (14) and (15) and divide by (1 + �) � n.
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Our assumption that the distribution F is regular ensures that for all �, the function w (�; �)

is increasing in each component of �.

Notice that the Lagrangian (16) is independent of the derivatives of q (�) and rH (�). Thus,
the Euler equation that solves the problem of maximizing (16) is not a di¤erential equation,

and therefore the between-type-pro�les aspects of the optimization problem are degenerate.16

Thus, the problem can be solved pointwise, i.e. by maximizing the integrand at each � (see

also Kamien and Schwartz, 2012, part I, section 5, p. 34).

Fix a pro�le of types � and a multiplier �. The part of the Lagrangian (16) that is a¤ected

by q(�; �) and rH(�; �) is:

L̂ (q; rH ; w) = q(rH � (1� w))�
1

n
� c(q; rH) (18)

where rH ; w and q are used for brevity instead of rH (�; �) ; w(�; �) and q (�; �). Note that � and

� a¤ect the values of the maximizers q and rH only through w. Di¤erentiating L̂ (q; rH ; w)
with respect to q and rH and equating to zero yields:

L̂1 (q; rH ; w) = rH � (1� w)�
1

n
� c1 (q; rH) = 0, (FOCq)

L̂2 (q; rH ; w) = q �
1

n
� c2 (q; rH) = 0. (FOCr)

where c1(q; rH) is the derivative of the function c(q; rH) with respect to its �rst argument q,

and c2(q; rH) is the derivative of c(q; rH) with respect to its second argument rH .

Given � and �, denote by (~q(�; �); ~rH(�; �)) the signal that solves (FOCq) and (FOCr),

if such a signal exists. We say that (~q(�; �); ~rH(�; �)) is interior if ~q(�; �) 2 (0; p=rH) and

~rH(�; �) 2 (p; 1). Recall that (~q(�; �); ~rH(�; �)) is SP if ~rH(�; �) � 1 � �(n�m+1) and ~q(�; �) 2
(0; p=rH).

We characterize the optimal mechanism for a class of cost functions c (q; rH) that satisfy

the following properties:17

16In the language of calculus of variations, the problem is not a dynamic one.
17Formally, we require the following properties: (P1) c1 > 0; c2 > 0; c11 > 0; c22 > 0; c12 > 0; c211 > 0,

(P2) c1
�
p
rH
; rH

�
> n for any rH > p, and c2 (q; 1) > n for any q 2 (0; 1) and (P3) as stated in the text.

A su¢ cient condition for (P3) to hold is that c11c22 � (1� c12)2 > 0 whenever q = c2 (q; rH), which is the
(FOCq) condition. Alternatively, this condition holds if the right-hand-side of Equation 18) is quasi-concave.

If c
�
fqj ; rjgJj=1

�
=
P

j qjh (rj) for some h : [0; 1]! R+, then (P3) is satis�ed when h is increasing and convex.

22



P1 The cost and marginal costs are all increasing in both q and rH . The marginal cost of rH
is convex in q.

P2 The marginal cost of achieving certainty in either ! = 0 or ! = 1 is at least n.

P3 For any w there is at most one solution to (FOCq) and (FOCr).

It is easy to verify that these properties are satis�ed by the cost function that is proportional

to the mutual information between the signal and the state (given by Equation 2) or to the

expected variance of the induced posterior beliefs.

Proposition 2 Assume the cost function c satis�es (P1)� (P3). Then there exists �� � 0 for
which an optimal auxiliary mechanism q� (�) ; r�H (�) is characterized as follows:

� If (~q (�; ��) ; ~rH (�; ��)) is not interior, then no information is acquired for the pro�le �.

� If (~q (�; ��) ; ~rH (�; ��)) is interior and SP, then q� (�) = ~q (�; ��) and r�H (�) = ~r (�; ��),

� If (~q (�; ��) ; ~rH (�; ��)) is interior but is not SP then r�H (�) = 1 � �(n�m+1) and q� (�)
is determined according to (FOCq), provided that the solution is interior. Otherwise, no

signal is acquired.

Finally, r�H (�) is decreasing in each player�s type, and q
� (�) is increasing in each player�s type.

The proposition addresses the following special cases.

The case of commonly known types and/or no participation constraints. The optimal
auxiliary mechanism when types are commonly known is obtained by setting �� = 0. To see

this, note when � = 0 the problem of maximizing the Lagrangian (16) reduces to maximizing

the aggregate surplus as given in (12) subject only to the SP constraint. Under complete

information, a signal is purchased only when it creates a positive social surplus and therefore,

the cost of the signal can always be covered, and the excess surplus can be redistributed to

satisfy all the players�participation constraints.

The solution that is obtained when �� = 0 is optimal also if types are private and players are

obligated to participate in the bargaining. The reason is that under incomplete information,

it follows from standard arguments (see, e.g. Borgers, 2015) that if there are no participation

constraints, there exists a payment schedule that induces truthtelling and allows the group to

implement the socially optimal outcome of the complete information case.18.

18Speci�cally, T (�i) = T (0) + Q(�i) � �i +M(0) �M(�i) �
R �i
0
Q (x) dx, where Q and M are given by (14)

and (15), respectively, with q (�) and rH (�) characterized by Proposition 2 with �� = 0, and T (0) is chosen to
satisfy budget balance (since we don�t need to worry about participation constraints).
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The case of a contractible collective action. The case in which the mechanism can choose
the signal and the action with no voting is equivalent to the case in which a single vote for

a = 1 is enough to make that decision (i.e. m = 1). To see this, notice that by (FOCq), if an

interior signal is purchased, then it is always the case that at least one player prefers the action

a = 1 when the high posterior rH is realized.19 Under m = 1, this means that every interior

solution is supermajority-persuasive and therefore the SP constraint never e¤ectively binds at

the optimum. Thus, when m = 1 the SP constraint can be ignored. It is easy to verify that

solving the problem without the SP constraint is e¤ectively the same as solving the problem

when actions are contractible (in this case, too, the optimal signal is always instrumental, but

the mechanism can choose the action a = 1 after a realization of the posterior rH , regardless of

its value.)

An immediate corollary of Proposition 2 is that when the cost function is proportional to

the mutual information between the signal and the state, the optimal auxiliary mechanism is

characterized as follows.20

Corollary 1 Suppose that the cost function is de�ned by Equation (2). Let �� be the constant
de�ned in Proposition 2. Then, in the optimal auxiliary mechanism:21

r�H (�) = max

�
e
n
� � en�w(�;��)

e
n
� � 1

; 1� �(n�m+1)
�

(19)

Next, r�L (�) is determined such that DKL(r
�
H (�) ; r

�
L (�)) =

n
�
[r�H (�)� (1� w (�; ��))] provided

that a solution exists and is in (0; p); Otherwise, r�L (�) = p. If r
�
H (�) > 1��(n�m+1) then r�L (�)

is given by:

r�L (�; �
�) = min

�
e
n
�
(1�w(�;��)) � 1
e
n
� � 1

; p

�
. (20)

Finally,

q� (�) =
p� r�L (�)

r�H (�)� r�L (�)
(21)

19To see this formally, note that when m = 1, then if (~q (�; ��) ; ~rH (�; ��)) is interior, it follows from (FOCq),
that ~rH (�; ��) > 1 � w (�; ��). However, since w (�; ��) � w (�; 0) � �(n), then ~rH (�; ��) > 1 � �(n), implying
that SP is never violated when acquiring a signal that is socially optimal.
20As in the central planner benchmark, it is still true that as � ! 0; the optimal signal to acquire for each

type pro�le converges to the fully informative signal. However, since the value of the Lagrange multiplier ��

changes with �; it remains an open question whether the acquired signal for a type pro�le necessarily becomes
more Blackwell informative as � decreases.
21We do not restrict rH(�) to be at most one if no signal is acquired (i.e., if q(�) = 0). Indeed, r�H(�) > 1

whenever w(�; �) < 0: But in this case, r�L(�) = p, and hence, q(�) = 0. Also notice that since �i � 1 � p, it
follows that 1� �(n�m+1) � p:
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Proposition 2 established that q�(�) is increasing in each of its components. An immediate

corollary of this is the following (see Mookherjee and Reichelstein, 1992):22

Corollary 2 There exists an optimal auxiliary mechanism that solves the problem stated in

Lemma 2 in which truthtelling is a dominant strategy equilibrium.

4.3 From the auxiliary mechanism to the actual mechanism

Up to now we analyzed an auxiliary mechanism, which operates as if the players commit to vote

on the collective action according to their reported types. In such a mechanism, when a player

considers misreporting, he takes into account that in the subsequent voting game his vote will

not be cast according to his true preferences but rather according to his report. For instance, if

player i of type �i reports that his type is �0i > �i, and a posterior rH between 1� �0i and 1� �i
is realized, then the mechanism votes for a = 1 on behalf of the player even though the player

actually prefers the action a = 0 according to the information he possesses and his true type.

This fact may discourage players from misreporting their types in the auxiliary mechanism. In

contrast, in an actual mechanism a player is free to vote according to his true preferences. In

that case, a player may have an incentive to a¤ect the choice of the signal, knowing that he can

vote in favor of his truly preferred action in the ensuing voting game.

Consider now an �actual�mechanism that employs the functions q� (�) and r�H (�) that were
characterized in Proposition 2. Does the mechanism remain incentive-compatible, budget-

balanced and individually rational even though the players vote on the collective action accord-

ing to their true preferences? Our next result shows that this is indeed the case.

Proposition 3 The solution to the optimal actual mechanism coincides with the solution to

the optimal auxiliary mechanism.

The proof hinges on the fact that there exists an optimal auxiliary mechanism, characterized

by Proposition 2, which is SP and where truth-telling is a dominant strategy. We show that

if a player wants to misreport in the actual mechanism, but not in the auxiliary mechanism,

it must be the case that after rH is realized the player �nds it bene�cial to vote for the status

quo (a = 0), whereas the auxiliary mechanism would have voted on his behalf for taking the

action (a = 1). However, it can be shown that in this case the player can pro�tably deviate in

the auxiliary mechanism by reporting that he is of the lowest type.

22The equivalence between Bayesian and dominant incentive compatibility that we use here is de�ned in terms
of the ex-post allocation. Mookherjee and Reichelstein (1992) show that this equivalence fails unless the ex-post
allocation rule (which corresponds to q in our environment) is monotone in each of its coordinates. Gershkov
et al. (2013) use a more permissive notion of equivalence, which considers the interim expected utilities of the
players. They then show that this form of equivalence between Bayesian and dominant incentive compatible
mechanisms holds whenever players have linear utilities and independent, one-dimensional, private types.
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5 Properties of the optimal signal structure

The characterization in Proposition 2 allows us to describe features of the optimal signal struc-

ture, and to also explain the e¤ect of incomplete information and a supermajority requirement

on the voting stage.

The mapping from types to signals. The characterization in Proposition 2 highlights

three types of outcomes of the bargaining over information. These are summarized in the

following proposition. To simplify the statement of the proposition, we slightly strengthen the

assumptions on the cost function, and require that the marginal cost with respect to rH is

in�nite when rH = 1 and q > 0; and the marginal cost with respect to q if �nite when q = 0

and rH = 1.23

Proposition 4 Suppose that the cost function is c (q; r) = � � ĉ (q; r) and that it satis�es (P1)�
(P3) for all �. For any type distribution F and for any m > 1, there exists �� such that for all

� < ��, the optimal mechanism partitions the set of all type pro�les into three subsets:

i. No signal: a positive measure subset of type pro�les for which no signal is acquired,

ii. Interior signal: a positive measure subset of type pro�les for which the signal is given by

the solutions to Equations (FOCq) and (FOCr),

iii. MSP signal: a positive measure subset of type pro�les for which an MSP signal is ac-

quired.24

If � > ��, subset (i) is of positive measure, while subsets (ii) and (iii) may be empty.

To illustrate the projection of the above three cases onto the players�type space, suppose

there are two players who need a unanimous vote in order to depart from the status-quo and

choose a = 1 (i.e., m = n = 2). Proposition 4 highlights the following features of the optimal

signal, which are also depicted in Figure (2b) below. When the sum of the players�types is

small, no signal is purchased. Indeed, if the aggregate social harm from incorrectly keeping

the status-quo is small, purchasing a costly signal is ine¢ cient. Conversely, when the sum of

types is large, it is optimal to purchase a signal. Intuitively, this is because the social harm of

incorrectly keeping the status-quo is large and because convincing the players that the action

23Formally, we assume that c2 (q; 1) is in�nite for every q > 0 and that c1 (0; 1) is �nite. These stronger
assumptions guarantee that the set of type pro�les for which MSP signals are acquired has a non-zero measure
�signals with rH = 1 are not too costly, nor too cheap, to acquire. These conditions are satis�ed by our leading
cost speci�cation given by Equation 2, in which case c1 (0; 1) = �� ln (p) and c2 (q; 1) =1 for all q > 0.
24As de�ned in Section 4.2, a signal is MSP (minimally-supermajority-persuasive) for the type pro�le � if the

high posterior rH is equal to 1� �(n�m+1):
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a = 1 is optimal is relatively easy. When one type is high and the other is low, a signal is

purchased but its characteristics must be distorted to just pass the unanimity requirement.

This is because the high posterior rH must be su¢ ciently large so as to convince the low type

to agree to vote for a = 1 upon the realization of rH .

The e¤ect of asymmetric information. To understand the distortions that are due to the
fact that players�types are privately known, it is instructive to compare the characterization of

the optimal signal in Proposition 2 in the two cases of complete and incomplete information. Let

(qc (�) ; rcH (�) ; r
c
L (�)) denote the mapping from commonly known type pro�les to signals that

maximizes the total ex-ante social surplus (OBJ) such that the acquired signal is SP. We refer

to this as the optimal acquisition rule under complete information. Recall that this acquisition

rule is obtained by letting �� = 0. Since w(�; �) (as de�ned in Equation 17) is increasing in

each �i, decreasing in � and w((1� p; :::; 1� p); �) = 1� p for any �, it follows that

w (�; ��) < w (�; 0) � w ((1� p; :::; 1� p); 0) = 1� p

Since w(�; ��) is continuous in each �i, there exists �0 > � (i.e., �0i � �i for all i, with at least
one strict inequality) such that w (�0; ��) = w (�; 0). This has the following implications.

Observation 1. If � is such that under both complete and incomplete information a signal is
acquired and the SP constraint has slack, then qc (�) > q� (�) and rcH (�) < r

�
H (�).

Since q(�) is the probability of taking the non-default action, this observation means that

under incomplete information this action will be taken with a lower probability. However, since

rcH(�) < r
�
H(�), then whenever the non-default action is taken under incomplete information, it

is taken with greater con�dence.

An intuition for the above observation stems from how a signal is distorted in order to incen-

tivize players to reveal their type. From the literature on trade with asymmetric information,

we know that in order to incentivize agents to reveal their types, the probability of trade must

be distorted downward. Since a signal is a multidimensional object, apriori it is not clear how

information will be distorted to incentivize truthtelling. Our characterization shows that the

distortion will occur by lowering the probability that a = 1 will be taken, i.e., by lowering q:

However, in contrast to a standard mechanism-design problem of allocating an asset, since

the mechanism in our environment (or the bargaining) decides on a signal, it can �compensate�

for the distortion in the probability of taking a = 1 (i.e., q) by changing the likelihood that

this is the correct action whenever it is taken (i.e., by changing rH). In the family of cost

functions that we focus on, both the marginal cost and the marginal bene�t of rH decrease

when q is distorted down relative to the unconstrained socially optimal value. However, since
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the marginal cost of rH is convex in q (see P1 above), whereas the marginal bene�t is linear in q;

in order to satisfy the �rst-order condition (FOCr), rH must increase (relative to the complete

information case).

A related intuition concerns the ability of low types to veto information acquisition. Low-

ering the probability that the signal will be acquired, and raising the con�dence that a = 1 is

the right action (conditional on acquisition), makes the low types more inclined to participate

in the bargaining over information.

Observation 2. If qc(�) = 0 then q�(�) = 0; but the converse is not true.

Put di¤erently, there are realizations of � for which information is acquired under complete

information but not under incomplete information. Hence, the fact that players do not observe

each other�s type can lead to under-provision of information for the collective decision, which

implies greater �conservatism�in the sense of being less likely to depart from the status-quo.

This again follows from the downward distortion in q that is necessary to induce players to

reveal their type. Consequently, for some type pro�les � for which qc(�) is relatively low, this

probability will decrease to zero when types are private.

Observation 3. A type pro�le is assigned an MSP signal under incomplete information, only
if it is assigned one under complete information.

The fact that players vote after they observe the realization of the acquired signal introduces

an ex-ante distortion even when players�types are commonly known. This occurs when the

signal (q; rH) that maximizes ex-ante welfare satis�es q > 0 and p < rH < 1 � �(n�m+1).
In this case, the acquired signal will be distorted such that rH will increase to 1 � �(n�m+1).
Observation 3 establishes that introducing private types does not exacerbate this distortion.

There are two reasons for this. First, some type pro�les that are assigned a signal that just

satis�es the SP constraint when the pro�le is commonly known may be assigned no signal when

types are privately known. This follows from the downward distortion in q (relative to the

unconstrained socially optimal signal), which arises under incomplete information in order to

induce truthtelling. Since the SP constraint typically has bite when some players have low types,

it means that for these pro�les, qc is relatively low (since it increases in each player�s type).

Hence, for su¢ ciently low qc, the downward distortion introduced by private types may drive

this probability all the way down to zero. The second reason is a consequence of Observation

1: For each type pro�le r�H > r
c
H , and therefore, for some pro�les where the SP constraint is

binding under the complete information, the increase in rH introduces slack to the constraint

under incomplete information.

We illustrate the above di¤erences between the complete and incomplete information envi-

ronments for the case of two players who need to unanimously agree on a = 1 (i.e., n = m = 2)

whose types are independently drawn from a uniform distribution on [0; 0:25] and the prior
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Figure 2: Optimal signals for two players. (a) The case of complete information and m = 1.
(b) Complete information and m = 2. (c) Privately known types, uniformely distributed over
[0,0.25] and m = 2.

probability p is 0:75. The cost function is assumed to be proportional to the mutual informa-

tion between the state and the signal, as de�ned in Equation (2), with � = 0:55. We use this

example to also illustrate the e¤ect of allowing players to commit to what collective action they

will choose for each signal realization, which as explained above, is obtained by setting m = 1:

Figure (2a) illustrates the complete information case with m = 1. There are two regions

in this �gure. The area in grey represents the type pro�les for which no signal is acquired,

while the area in blue represents the types pro�les for which the socially optimal signal is

purchased. Notice that since m = 1, supermajority persuasiveness has no bite. It follows that

the case represented by this �gure exhibits no distortions relative to the (unconstrained) socially

optimum.

Figure (2b) illustrates the complete information case with m = 2. Here, a third region

emerges: The hatched area represents the type pro�les for which the (unconstrained) socially

optimal signal is not supermajority persuasive, but acquiring an MSP signal is better than no

information at all. Notice that this occurs for pro�les in which the average type is above some

threshold but the minimal type is small.

Finally, Figure (2c) corresponds to the case of asymmetric information with m = 2. This

�gure depicts the observations above: The region in which no signal is acquired under asym-

metric information contains the corresponding region under complete information. The regions

with MSP signals under asymmetric information are contained in the corresponding regions

under complete information. The red region represents type pro�les for which the signal is

distorted due to asymmetric information, i.e., relative to the case of complete information, q is

lower and rH is higher.
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The diagnostic odds ratio of the acquired signal. In our environment, a signal is essen-
tially a classi�cation test: Either a reform is needed (! = 1) or not (! = 0). As in any imperfect

classi�cation test, there are false positives (choosing the reform when it should not be chosen),

and there are false negatives (sticking with the status quo when a reform is required). How

should one evaluate the �quality�of the signal as a diagnostic tool for when the group should

adopt the reform? The literature on clinical testing (see, e.g. Glas et al., 2003) has proposed

the Diagnostic Odds Ratio (DOR) as a possible one-dimensional indicator of diagnostic perfor-

mance that takes into account both forms of false results. More speci�cally, the DOR measures

the ratio between the odds of positive results when a reform should be chosen (rH=rL) to the

odds of positive results when a reform should not be chosen ((1� rH)=(1� rL)).
Should the quality of a test depend on the particular stochastic realization of the types? In

our leading speci�cation, where the cost is measured as the mutual information between the

state and signal, as de�ned in Equation (2), Corollary 1 implies that for interior solutions the

signal�s quality (as measured by DOR) is independent of the types pro�le and is equal to en=�.

Thus, the more members, the better the quality; And, the greater the cost scaler �, the lower

the quality. In this sense, the quality of the optimal signal is robust to the particular realization

of types.

The e¤ect of the supermajority rule. In our model, players do not have private information
on the state ! (see also Section 6.3). Thus, voting on the collective action does not serve as

a mean for aggregating information (notice the di¤erence from settings in which the players

are privately informed about the state, in which case more votes typically contribute to the

probability that the right decision is taken). Consequently, a higher supermajority requirement

only toughens the supermajority-persuasiveness constraint. In particular, as explained above,

when m = 1; this constraint is never binding. This makes it more di¢ cult for the group to

purchase a persuasive signal. Hence, in some cases the group foregoes opportunities to depart

from the status-quo, which could have raised its welfare. This implies the following:

Observation 4. The socially optimal gain from information is non-increasing in the superma-
jority requirement m.

This observation is illustrated for the case of commonly known types in panel (a) of Figure

3. The �gure assumes n = 16 players whose types are uniformly distributed over [0; 0:3], a prior

probability p = 0:7 that the state is ! = 1 and a cost function given by Equation (2) with � = 8.

Panel (b) depicts the ex-ante probability to acquire information (i.e., the probability mass of

type pro�les for which qc (�) > 0) as a function of m for di¤erent values of � . As evident

from the �gure, for larger m and for larger �; the ex-ante probability to acquire information

decreases.
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Figure 3: E¤ects of the cost scaler � and the supermajority requirement m

While the monotonicity exhibited in panel (a) remains even if types were not commonly

known, the monotonicity in panel (b) is not guaranteed for intermediate values of m if types

are private information. This is because changes in the required supermajority m may a¤ect

the probability to acquire information through the value of �� in subtler ways. It is noteworthy,

however, that at the extreme, if unanimity is required (m = n) and n is su¢ ciently large,

then for almost all type pro�les the minimally-supermajority-persuasive signal requires rH to

be close 1. If the cost function is such that purchasing a signal that fully reveals ! = 1 (i.e.

rH = 1) is too costly, then no signal will be acquired for almost all type pro�les. In our leading

cost speci�cation (Equation 2), this is true for � su¢ ciently large.

Finally, the supermajority requirement a¤ects the likelihood that deviating from the status-

quo is the right decision, conditional on making that decision. By Proposition 2, when types

are commonly known (i.e. �� = 0), a tougher SP constraint immediately implies that either

information is acquired with a weakly higher rH ; or information is not acquired if the higher rH
that the SP constraint requires is too costly. When types are not commonly known, the e¤ect

is again more subtle and depends on the distribution of types because a change in m can also

a¤ect the value of ��:
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6 Discussion

In this section we discuss some key features of our model.

6.1 Key features of the preference speci�cation

We start by examining which features of our preference speci�cation are necessary for tractabil-

ity, and which play a key role in the analysis of the optimal mechanism. Virtually all works on

voting that involve costs or transfers assume binary actions and states, unidimensional types

and quasi-linear preferences (these include among many others: Dal Bó (2007), Dekel, Jack-

son and Wolinksy (2008), Casella, Llorente-Saguer and Palfrey (2012) and Drexl and Kleiner

(2018)). In particular, unidimensionality is important for our mechanism-design approach to

the bargaining over information since mechanism-design with multidimensional types is noto-

riously di¢ cult. Since there are four di¤erent utility numbers (corresponding to all possible

combinations of the action and the state), some normalization is needed to reduce the types to

a single dimension.

Our normalization involves two assumptions: (i) the payo¤ from matching the state is in-

dependent of the state (and higher than the payo¤ from a mismatch to capture the common

value component) and (ii) the payo¤s from a mismatch sum up to a constant. It is the second

assumption that allows us to apply Myersonian techniques to characterize the socially optimal

(budget-balanced and individually rational) bargaining outcomes. To see this, denote a player�s

payo¤ from (a = 1; ! = 0) by x; and the payo¤ from (a = 0; ! = 1) by y: As we showed in Sec-

tion 4.1, a player�s gain from participating in the bargaining, relative to having no information,

is equal to q[x � 1 + (2 � x � y)rH ]; where q is the probability of choosing a = 1: If x + y is
a constant, then x can represent a player�s type, and we obtain that in the expression for the

player�s gain, the type only multiplies q: This implies that the mapping from types to signals

and cost shares is incentive compatible only if the interim-expected value of q is monotone in

the player�s type.

Our analysis can also be carried out with alternative normalizations that yield a unidimen-

sional type space. For example, suppose all players get a payo¤ of 1 when the action matches

the state, and all get a payo¤ of zero when a = 1 but ! = 0. De�ne a player�s type t to be

his payo¤ when a = 0 but ! = 1, where t 2 (�1; 1): Then type t�s gain from the bargaining,

relative to having no information, is equal to q[�1 + (2 � t)rH ]: By making a change of vari-
ables such that x := q � rH and y := q (and letting z := (p � x)=(1 � q) to capture rL), the
expression for type t�s gain becomes �tx + 2x � y: Note that in this formulation, a player�s
type multiplies the variable x: Incentive-compatibility would then require the interim-expected

value of x to be monotone in a player�s type. It can be shown that under our leading cost

speci�cation (2), at the optimal solution, rL is decreasing in each type, while q is increasing,
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and since rL = (p� q � rH)=(1� q); it follows that x is monotone in types. Hence, we can also
apply the Myersonian techniques to this payo¤ speci�cation.

6.2 The participation constraint

Recall that in our model, a player who opts-out from the bargaining e¤ectively vetoes the

provision of a public signal. We make this assumption for two reasons. First, this veto-power

assumption is typical in almost all public good settings (e.g., Mailath and Postlewaite, 1990 and

Hellwig 2003). Second, from a more technical point of view, this assumption implies that the

value of the outside option for each player does not depend on the types and actions of other

players (notice, however, that the value does depend on the type of the player who opts out).

While obviously there are situations that do not �t this assumption, there are many others that

do.

One can of course think of other assumptions about the players�outside options. However,

when considering such alternative assumptions, it is important to notice that in the novel

bargaining problem that we study, it is not obvious what a player should expect to get if

he does not participate in the bargaining over the signal. For example, if a quitter cannot

prevent the others from acquiring a signal, does he observe the realization? Does he vote on

the collective decision? Can he be excluded from the consequences of the ultimate collective

decision? While each of these alternatives may be a reasonable description of some �real-world�

scenario, none of them seem to be universally true. However, each of these alternative introduces

new challenges to the analysis. For example, even if the quitter cannot prevent the others from

acquiring information and cannot participate in the voting (but he does enjoy the consequences

of the decision), then when considering to quit he needs take into account the equilibrium

outcome of the game without him. This means that the participation constraint is determined

endogenously in equilibrium. Thus, our paper opens the door to many interesting questions

regarding the e¤ect of outside options in situations of bargaining over public information.

An interesting feature of our framework is that by opting out, a player reveals information

about his type. Our veto-power assumption implies that this learning has no e¤ect because the

game essentially ends with the group choosing the status-quo. Notice that even if we were to

assume that a player who quits the bargaining cannot prevent others from voting on the signal,

the information that is leaked about the quitter type still does not e¤ect the voting strategies.

This follows from the fact that each player has a weakly dominant strategy that depends solely

on his own type and on the public signal.25

25In contrast, there is a literature that looks at second stage trading that follows a �rst-stage auction. In
these environments, the information learned about a player in the �rst stage �in particular whether that player
opted out �a¤ects the strategic behavior in the second stage. See, for example, Zheng (2002), Haile (2003),
Hafalir and Krishna (2008), Zhang and Wang (2013) and Dworczak (2020).
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6.3 Public vs. private information

This paper focuses on the acquisition of public information before making a collective action.

Clearly, there are situations where group members can also decide on costly acquisition of

private information. Extending the model by allowing players to collect private information

introduces some non trivial challenges.

First, it is no longer the case that each player�s type has a weakly dominant strategy

that depends solely on the public signal. Second, determining the e¤ect of tightening the

supermajority requirement is more di¢ cult: On the one hand, the supermajority rule a¤ects

the players� incentives to acquire private information (see. e.g. Persico, 2004); on the other

hand, the supermajority rule serves to aggregate the private information collected by the players.

Finally, when the decision to acquire private information is made before the decision to acquire

public information, there is a more complicated learning that occurs about the players�types.

In particular, here the inference that each player makes about the other group members can

a¤ect his voting behavior because he may also update his beliefs about the state. Hopefully

our work will inspire future research to explore these questions.

7 Concluding remarks

This paper is concerned with the question of how groups who want to make informed collective

decisions bargain over which information to acquire. Instead of committing to a particular

bargaining protocol, we took a mechanism-design approach that looks for the signal that maxi-

mizes the players�expected sum of utilities, taking into account that (i) players must be willing

to participate in the mechanism, (ii) they must be willing to disclose their private willingness-

to-pay for information, and (iii) players vote on the outcome after they jointly observe the

realization of the acquired signal.

The optimal mechanism exhibits two types of distortions in information acquisition. First,

the fact that the group members vote on the basis of the signal realization implies that the

signal that maximizes the net expected surplus is not necessarily the signal that is acquired

(even when types are commonly known). This stems from the fact that it is wasteful to purchase

a signal that will not persuade a supermajority to vote against the default. Second, the fact

that players need to be incentivized to disclose their types, as this determines what the optimal

signal is, further distorts the type of information that is acquired: The probability of departing

from the status-quo decreases while the induced posterior belief that this is the right decision

increases (i.e., when the players vote for a = 1 they do so with higher con�dence).

Thus, our analysis suggests that groups who rely on collective public information to make

collective decisions are more conservative in departing from a status-quo relative to the case
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of commonly known types (with or without a central planner). This conservatism stems from

the distortions in information acquisition summarized above. This implies, for example, that

households would underinvest in information, or would tend to acquire information that is more

likely to con�rm the status-quo decision. This observation is consistent with recent evidence

that households sometimes make suboptimal decisions on important issues (such as fertility)

because they are insu¢ ciently informed (see Ashraf et. al, 2021). Likewise, our results suggest

that organizations may pass on potential projects if such projects require the consent of a

majority of managers. This again stems from conservatism in acquiring information (e.g., a

tendency not to try pilot studies).

Finally, our paper proposes a framework for incorporating a stage of information acquisition

to situations of collective decision-making. This framework can be used as a building block

in applications that consider such environments. For example, the extensive literature on

household decisions have long recognized the need to account for the fact that these decisions

are the outcome of a non-cooperative game between the members (see Lundberg and Pollak,

1996). However, it has overlooked the fact that many of these decisions require the members

to collect costly information, a decision which, by itself, is subject to bargaining. Our work

provides the theoretical foundations to incorporating such considerations into this and other

literatures on collective decision-making.
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8 Appendix: Proofs

Proof of Lemma 1

Let � 2 [0; p]n be the players�types. Consider a signal that induces a probability distribution
q over a set R 2 [0; 1]J of posterior beliefs (on state ! = 1) such that the expected posterior
equals p, i.e.

P
r2R q (r) � r = p. Let �R (respectively, R) be the set of posterior beliefs above

(respectively, below) 1� �(n�m+1). Suppose that �R contains (at least) two distinct elements r0

and r00, where r0 < r00. Both r0 and r00 lead to the same collective action a = 1 in the voting

game.

Consider now a modi�ed signal that induces a distribution q̂ over a set of posterior beliefs

R̂. The set R̂ is identical to R, with one di¤erence: The posteriors r0 and r00 are replaced by

the posterior r̂ � q(r0)
q(r0)+q(r00)r

0 + q(r00)
q(r0)+q(r00)r

00. The distribution q̂ is de�ned such that q̂(r) = q(r)

for all r 2 Rnfr0; r00g, while q̂(r̂) = q(r0) + q(r00). Note that since r̂ 2 (r0; r00), then r̂ is above
1 � �(n�m+1) and so it induces the collective action a = 1, which is the same as the collective
action induced by r and r0. Thus, the modi�ed signal q̂ (over R̂) induces the same distribution

over outcomes as the original signal q (over R). By construction, the modi�ed signal also

satis�es
P

r2R̂ q̂ (r) � r = p. Since the modi�ed signal is strictly less informative in the Blackwell
sense, it is cheaper than the original one. The proof for the case in which there are more than

two elements in R is analogous. �

Proof of Proposition 1

Fix n and �. The derivative of rH in the planner�s solution (as de�ned in 5) with respect to �

is given by:
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Similarly, the derivative of rL in the planner�s solution (as de�ned in 5) with respect to �
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� < 1 (to see this, de�ne g as before, and notice that dg=dz < 0 for all z < 1 and � < 1). Thus,

rL is increasing in �.

Taken together, these observations imply that for all n and �, as � decreases, the value of

rH in the planner�s solution increases whereas rL decreases, making the signal purchased by the

planner more Blackwell informative. Finally, It is easy to verify that as � ! 0 the values of

rH and rL, as given by (5), converge to 1 and 0, respectively, while q converges to p. Thus, as

the cost scaler goes to zero, the socially optimal signal that the planner acquires for any type

pro�le converges to the fully informative one.�

Proof of Lemma 2

From U (�i) =
R �
0
Q (x) dx�M(0)� Ti(0) we obtain:

Ti(�i) = Q(�i) � �i �M(�i)�
Z �

0

Q (x) dx+M(0) + Ti(0). (22)

Player i�s ex-ante expected net utility is given by
R 1�p
0

U(�i)dF (�i). Applying integration by

parts we obtain:Z 1�p

0

U(�i)dF (�i) =

Z 1�p

0

Q(�i)[
1� F (�i)
f(�i)

]dF (�i)� Ti(0)�M(0)

Plugging in U (�i) = Q(�i) � �i �M(�i)� Ti(�i) and rearranging yields:Z 1�p

0

Ti(�i)dF (�i) = Ti(0) +M(0) +

Z 1�p

0

[v(�i) �Q(�i)�M(�i)] dF (�i) (23)

where v(�i) is the virtual valuation of type �i.

Substituting Equation (23) into Equation (11) yields that the designer�s problem is to max-

imize
nX
i=1

Z 1�p

0

�
1� F (�i)
f(�i)

Q(�i)

�
dF (�i)�

nX
i=1

Ti(0)�
nX
i=1

M(0) (24)

subject to the following ex-ante budget balance constraint (which is obtained by plugging

Equation 23 into Equation BB):Z
�

c(q(�); rH(�))dF
n(�) =

nX
i=1

Ti(0) +

nX
i=1

M(0) +

nX
i=1

Z 1�p

0

[v(�i)Q(�i)�M(�i)] dF (�i) (25)

where individual rationality requires �M(0) � Ti(0) � 0 for every player i, and therefore

0 � �
Pn

i=1 [Ti(0) +M(0)]. Since the constants T1 (0) ; : : : ; Tn (0) enter the objective function

and the constraint only through the aggregate
Pn

i=1 Ti(0), we can assume that they are all
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equal. We therefore denote T (0) = T1 (0) = : : : = Tn (0). We then use the ex-ante budget-

balance constraint to substitute for �
Pn

i=1 Ti(0)�
Pn

i=1M(0) in Equation (24) and obtain the

objective function and the conclusion that inequality (13) is a necessary condition for individual

rationality and ex-ante budget-balance.

To show that inequality (13) is a su¢ cient condition for individual rationality and ex-ante

budget-balance, �rst denote by q� and r�H the solution to the optimization problem stated in

the lemma. Let 	� denote the aggregate virtual surplus (the left-hand side of Equation 13)

evaluated at q� and r�H . Second, compute M
� (0) using the q� and r�H . Third, set T

� (0) =

�M�(0) � 1
n
	�. This guarantees ex-ante budget balance according to Equation (25). Since

the aggregate virtual surplus 	� is non-negative by Equation (13) then individual rationality is

satis�ed (i.e. �T � (0) �M�(0) � 0). Finally, to complete the description of the mechanism it

remains to de�ne the transfer functions (t�i (�))
n
i=1 such that for each player i; E��i(t�i (�i; ��i)) =

T �i (�i). One way to do this is to simply let t
�
i (�i; ��i) = T

�
i (�i). �

Proof of Lemma 3

Suppose that hq; rH ; t1; :::; tni is an auxiliary mechanism that satis�es incentive compatibility,

individual rationality and ex-ante budget balance, but does not satisfy SP. We show a mod-

i�cation that increases the expected payo¤ to the players without a¤ecting the constraints.

Therefore, the given mechanism is not optimal.

Since the mechanism does not satisfy SP, there exist a non-zero measure of type realizations

(�i; ��i) for which q(�) > 0 and rH(�) < 1� �(n�m+1). Suppose we modify q into q0 as follows:

q0(�) =

(
q(�) if rH(�) � 1� �(n�m+1)

0 if rH(�) < 1� �(n�m+1)
.

That is, whenever the original mechanism purchases a non instrumental signal, the modi�ed

mechanism does not purchase a signal. Notice that

Q0(�i) =

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

q0(�i; ��i)dF (��i)

=

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

q(�i; ��i)dF (��i) = Q(�i)

M 0 (�i) =

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

(1� rH(�i; ��i)) � q0(�i; ��i)dF (��i)

=

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

(1� rH(�i; ��i)) � q(�i; ��i)dF (��i)

=M (�i) .
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Denote the expected decrease in the cost of purchasing signals by

� =

Z
�jrH(�)<1��(n�m+1)

c(q(�); rH(�))dF (�) > 0.

For every i 2 f1; : : : ; ng de�ne
t0i(�̂) = ti(�̂)�

�

n
.

The new mechanism satis�es incentive compatibility and individual rationality because Q0 =

Q andM 0 =M , and the transfers decreased by a constant for all types (so that�M (0)�T (0) �
0). By construction the mechanism is budget-balanced, and since the expected payment of type

0 decreased, then by Equation (24) the expected surplus increased. �

Proof of Proposition 2

The proof consists of three parts. First, we characterize the three functions, r�H (�; �) ; r
�
L (�; �)

and q� (�; �), that satisfy SP (see De�nition 1) and maximize L̂ (see Equation 18), for any
type pro�le � and any multiplier � (for ease of exposition we omit the dependency of L̂ on
the type pro�le and the multiplier in the notations). Second, we show that for any � � 0,

the function q� (�; �) is increasing in each player�s type whereas r�H (�; �) is decreasing in each

player�s type. Hence, the function Q� (�i; �) that is induced by q� (�; �) (according to Equa-

tion 14) is monotone. Third, we show that there exists �� � 0 for which the mechanism

de�ned by r�H (�; �
�) ; r�L (�; �

�) and q� (�; ��) generates zero aggregate virtual surplus. By the

Lagrange Su¢ ciency Theorem (see, e.g., Theorem C.1 in Kelly and Yudovina, 2014), the func-

tions r�H (�; �
�) ; r�L (�; �

�) and q� (�; ��) de�ne the mechanism that attains the maximal aggre-

gate surplus (Equation 12) subject to (i) Q (�i) is monotone and (ii) the aggregate virtual

surplus (Equation 13) is non negative.

PART I. Fix a type pro�le � and a multiplier � > 0 and let w = w (�; �). Recall that, as

de�ned in the text, (~q; ~r) is the signal that solves (FOCq) and (FOCr), if such a signal exists.

By property (P3), if (~q; ~r) is interior then it is the unique signal that satis�es the necessary

conditions for being a local (or global) maximizer of L̂.

We consider three cases:

Case (i): Suppose that (~q; ~rH) is not interior, or that (FOCq) and (FOCr) do not have a
solution. Then, it is optimal to purchase no signal. This is because the signal that maximizes

L̂ must be a �corner solution�: either rH = 1, or q = p=rH (which is equivalent to rL = 0), or
q = 0 (which is equivalent to acquiring no information). Consider the corner solution (q; 1) for

some q > 0. This solution does not maximize L̂ because by property (P2) of the cost function,
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1
n
c2 (q; 1) > 1 and therefore L2 (q; 1 ; w) < 0. Thus, decreasing rH increases L̂. Similarly, the
corner solution

�
p
rH
; rH

�
for some rH > p is also not a maximizer of L̂. This is because by (P2),

1
n
c1 (p=rH ; rH) > 1, and therefore L̂1 (p=rH ; rH ; w) < 0 for any w. Thus, the optimal solution
is the corner solution q = 0 in which no signal is acquired.

Case (ii): Suppose that (~q; ~rH) is interior and SP. Then, q�H (�; �) = ~q and r
�
H (�; �) = ~rH . To

prove this, it su¢ ces to show that (~q; ~rH) is better than any corner solution. This is because, by

property (P3) of the cost function, there are no other local or global interior maximizers for L̂.
The signals in which rH = 1, or q = p=rH are not optimal because of the argument presented

in Case (i) above. To see why acquiring no information (q = 0) is not optimal, consider the

function g (q) � q � 1
n
c1 (q; ~rH)� 1

n
c (q; ~rH) that is obtained by plugging (FOCq) into L̂. The fact

that c11 > 0 (by property P1) implies that g (0) = 0 and g0 (q) > 0 for every q > 0. Since (~q; ~rH)

is interior then ~q > 0 and consequently L̂ (~q; ~rH ; w) = g (~q) > 0. Namely, the signal (~q; ~rH)

generates a positive value of L̂, which is greater than 0 that is obtained when no information
is acquired.

Case (iii): Suppose that (~q; ~rH) is interior but not SP. Let qMSP be the value that satis-

�es (FOCq) when rH is set to its MSP value, i.e. rH = 1 � �(n�m+1). Thus, qMSP satis-

�es L1
�
qMSP ; 1� �(n�m+1) ; w

�
= 0. If qMSP 2 (0; p=rH) the optimal signal is r�H (�; �) =

1 � �(n�m+1) and q� (�; �) = qMSP . Otherwise, it is optimal to acquire no information, i.e.

q� (�; �) = 0. To see this, recall again that (~q; ~rH) is the unique global (and local) maximizer

of L̂. Since (~q; ~rH) is not SP, the maximizer L̂ must be a corner solution: either acquire no
information (q = 0), or acquire the signals in which rH = 1 or q = p=rH , or acquire the signal�
qMSP ; 1� �(n�m+1)

�
, which is possible only if qMSP 2 (0; p=rH). The argument in Case (i)

above implies that a signal with rH = 1 or q = p=rH does not maximize L̂.26 An argument sim-
ilar to the one presented Case (ii) above, with the only di¤erence that rH is equal to 1��(n�m+1)

instead of ~rH , implies that if qMSP > 0 then L̂
�
qMSP ; 1� �(n�m+1) ; w

�
is positive, which is

higher than 0 that is obtained when no information is acquired.

We have therefore characterized the functions r�H (�; �) ; r
�
L (�; �) and q

� (�; �), that satisfy

SP and maximize L̂ for the given type pro�le � and multiplier �. Notice that property (P3)
implies that the signal (~q; ~rH) is continuous in �1; : : : ; �n and �,27 and therefore the functions

r�H (�; �) ; r
�
L (�; �) and q

� (�; �) are also continuous in �1; : : : ; �n and �.

PART II. Fix a player i, a type pro�le ��i of all the players other than i and a multiplier
�. To reduce clutter throughout this part of the proof we omit ��i and � from the notation

26That is unless �(n�m+1) = 0, in which case rH = 1 is in fact the MSP value of rH .
27By Berge�s Theorem, the set-valued map from w to maximizers of L̂ (q; rH ;w) is upper-hemicontinuous.

However, since by (P3), for every w the function L̂ (�; �;w) has a unique maximizer, i.e. the set-valued map is a
singleton for each w, then ~rH ; ~q are continuous in w, which is itself continuous in �1 : : : �n and �.
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and write q� (�i), r�H (�i), w (�i) ; c
�
i (�i) and c

�
ij (�i) instead of q

� ((�i; ��i) ; �), r�H ((�i; ��i) ; �),

w ((�i; ��i) ; �), ci (q� (�i) ; r�H (�i)) and cij (q
� (�i) ; r

�
H (�i)), respectively.

To show that q� (�i) is increasing in �i while r�H (�i) is decreasing in �i we prove three lemmas

which, taken together with the results of Part I, imply the desired monotonicity result. Lemma

4 asserts that if a signal is acquired when player i�s type is �i, then a signal is also acquired

when player i�s type is higher than �i. This implies that there exists some cuto¤ type �0i such

that if �i < �0i then no signal is acquired, i.e. q
� (�i) = 0 and r�H (�i) = 1,

28 and if �i > �0i then

some information is acquired (i.e. q� (�i) > 0).

Lemma 5 shows that if an interval (a; b) � [�0i; 1� p] is such that the optimal signal is
interior when �i 2 (a; b), then q� (�i) is increasing in �i, and r�H (�i) is decreasing in �i, as �i
varies within (a; b). Lemma 6 shows that this monotonicity of q� (�i) and r�H (�i) holds also

when �i varies within an interval (a; b) � [�0i; 1� p], if the optimal signal for every �i 2 (a; b)
is such that rH attains the MSP value 1 � (�i; ��i)(n�m+1) and q is determined according to
Equation (FOCq).

Lemma 4 Suppose that q� (�i) > 0 for some �i. Then q� (�i) > 0 for all �0i > �i.

Proof. The fact that q� (�i) > 0 implies that acquiring a signal is bene�cial for the type pro�le
(�i; ��i), which means that L̂ (q� (�i) ; r�H (�i) ; w (�i)) � 0. The fact that (q� (�i) ; r�H (�i))

is optimal for the type pro�le (�i; ��i) implies that r�H (�i) satis�es SP, i.e. r�H (�i) � 1 �
(�i; ��i)

(n�m+1).

Consider a type �0i of player i such that �
0
i > �i. Since the signal (q

�
H (�i) ; r

�
H (�i)) is SP for the

type pro�le is (�i; ��i), then it is also SP for the type pro�le is (�0i; ��i), because (�
0
i; ��i)

(n�m+1) �
(�i; ��i)

(n�m+1). Thus,

L̂ (q� (�0i) ; r�H (�0i) ; w (�0i)) � L̂ (q� (�i) ; r�H (�i) ; w (�0i)) > L̂ (q� (�i) ; r�H (�i) ; w (�i)) � 0.

The �rst inequality is because the signal q� (�0i) ; r
�
H (�

0
i) generates the highest value of L̂ among

all the signals that satisfy SP. The second inequality follows from the facts that, all else equal,

L̂ is increasing in w, and w (�0i) > w (�i) because the virtual values are increasing in types.

Finally, L̂ (q� (�0i) ; r�H (�0i) ; w (�0i)) > 0 implies that q� (�0i) > 0.

Lemma 5 Suppose that r�H (�i) = ~rH (�i) and q
� (�i) = ~q (�i) for all �i in some interval (a; b).

If �i; �0i 2 (a; b) such that �0i > �i, then q� (�0i) > q� (�i) and r�H (�0i) < r�H (�i).

28When q = 0 no information is acquired and the value of rH does not matter. Hence, there�s no loss in
assuming that in this case rH = 1.
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Proof. By de�nition, for any �i 2 (a; b) the (interior) signal (q� (�i) ; r�H (�i)) satis�es

r�H (�i)� 1 + w (�i) =
1

n
c�1 (�i) , and (26)

q� (�i) =
1

n
c�2 (�i) . (27)

In addition, since q� (�i) ; r�H (�i) maximizes L̂ (�; � ; w (�i)), the determinant of the Hessian
matrix that is associated with L̂ is non-negative when evaluated at q� (�i) ; r�H (�i). That is,�

� 1
n
c�11 (�i)

�
�
�
� 1
n
c�22 (�i)

�
�
�
1� 1

n
c�12 (�i)

�2
� 0. (28)

The fact that (26) and (27) hold simultaneously for all �i 2 (a; b), implies that the derivatives
with respect to �i, of both sides of each equation must also be the same. Thus,

dr�H (�i)

d�i
+
dw (�i)

d�i
=
dq� (�i)

d�i
� 1
n
c�11 (�i) +

dr�H (�i)

d�i
� 1
n
c�12 (�i) , and

dq� (�i)

d�i
=
dq� (�i)

d�i
� 1
n
c�21 (�i) +

dr�H (�i)

d�i
� 1
n
c�22 (�i) .

Since c is twice continuously di¤erentiable, then c�12 (�i) = c
�
21 (�i). Solving for dr

�
H (�i) =d�i and

dq� (�i) =d�i we obtain:

dq� (�i)

d�i
=

1
n
c�22 (�i) �

dw(�i)
d�i

1
n
c�11 (�i) � 1nc�22 (�i)�

�
1� 1

n
c�12 (�i)

�2 (29)

dr�H (�i)

d�i
=

�
1� 1

n
c�12 (�i)

�
� dw(�i)

d�i

1
n
c�11 (�i) � 1nc�22 (�i)�

�
1� 1

n
c�12 (�i)

�2 (30)

The numerator of (29) is positive because dw (�i) =d�i > 0 and c�22 (�i) > 0 (by property

P1). The denominator of (29) is positive because of Equation (28). Thus, dq� (�i) =d�i > 0 and

therefore q� (�0i) > q
� (�i).

To show that r�H (�
0
i) < r�H (�i) it su¢ ces to show that 1

n
c�12 (�i) > 1. This is because,

by Equations (28) and (30) and since dw (�i) =d�i > 0, the sign of dr
�
H(�i)

d�i
is the same as the

sign of 1 � 1
n
c�12 (�i). To see why

1
n
c�12 (�i) > 1, hold r�H (�i) �xed and de�ne the functions

g (q) � 1
n
c2 (q; r

�
H (�i)) and h (q) � q. Since g is increasing and convex in q (because of P1),

while h is increasing an linear in q, then g and h intersect for at most two values of q, where the

slope of g is greater (smaller) than the slope of h at the higher (lower) intersection point. Since

g (0) = h (0) and g (q� (�i)) = h (q� (�i)), as implies by Equation (27), and since q� (�i) > 0, we
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deduce that g0 (q� (�i)) > h0 (q� (�i)), i.e. 1
n
c�12 (�i) > 1.

Lemma 6 Suppose that r�H (�i; ��i) = 1 � (�i; ��i)(n�m+1) and q� (�i; ��i) > 0 is determined

according to (FOCq),for all �i in some interval (a; b). If �i; �0i 2 (a; b) and �0i > �i, then

q� (�0i) � q� (�i) and r�H (�0i) � r�H (�i).

Proof. The fact that r�H (�
0
i) � r�H (�i) follows immediately from the observation that �0i > �i

implies that (�0i; ��i)
(n�m+1) � (�i; ��i)(n�m+1). Therefore dr�H (�i) =d�i < 0. It remains to show

that q� (�0i) � q� (�i).
Given r�H (�i), the values of q

� (�i) is determined according to (FOCq):

r�H (�i)� 1 + w (�i) =
1

n
c�1 (�i) .

Since the equality holds for any � 2 (a; b), the derivatives with respect to �i of both sides of the
equation must also be the equal. Therefore:

dr�H (�i)

d�i
+
dw (�i)

d�i
=
dq� (�i)

d�i
� 1
n
c�11 (�i) +

dr�H (�i)

d�i
� 1
n
c�12 (�i)

Solving for dq� (�i) =d�i, we obtain:

dq� (�i)

d�i
=

�
1
n
c�12 (�i)� 1

�
�
�
�dr�H(�i)

d�i

�
+ dw(�i)

d�i

1
n
c�11 (�i)

. (31)

The fact that r�H (�i) = 1� (�i; ��i)
(n�m+1) means that the SP condition is binding. Hence,

L̂2 (q� (�i) ; r�H (�i) ; w (�i)) � 0, or equivalently q� (�i) � 1
n
c�2 (�i). Hence, an argument that

is similar to the one presented in the last paragraph of the proof of Lemma 5 leads to the

conclusion that:
1

n
c�21 (�i) > 1.

Since, in addition, dw (�i) =d�i > 0 (because virtual values are increasing in types), c�11 (�i) > 0

(because of property P1) and dr�H (�i) =d�i < 0 then Equation (31) implies that dq
� (�i) =d�i > 0

and therefore q� (�0i) > q
� (�i).

Part III. For any two signal functions q : �n ! [0; 1] and rH : �n ! [0; 1], denote the aggregate

surplus they induce (Equation 12) by W (q; rH), and the aggregate virtual surplus they induce

(Equation 13) by V (q; rH). Notice that q and rH in this part of the proof denote functions

rather than constant. Using these notations, the Lagrangian associated with our maximization
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problem (de�ned in Lemma 2) is:

L (q; r; �) = 1

1 + �
W (q; r) +

�

1 + �
V (q; r) (32)

=

Z
�

�
q (�) � [rH (�) + w (�; �)� 1]�

1

n
c (q (�) ; rH (�))

�
dF n (�) (33)

where (33) is identical to (16) and copied here for the ease of reference. For any �, denote by

q�;� and r�;�H the signal functions that were characterized in Part I of the proof and correspond

to this value of � (that is, q�;� (�) = q� (�; �) and r�;�H (�) = r�H (�; �), for any type pro�le �).

If V (q�;0; r�;0H ) � 0 then the proof is complete. In this case, the optimal signal functions are
q�;0 r�;0H . As we show in Parts I and II, these functions maximize the aggregate surplusW point-

wise (that is, for any type pro�le �) and induce a monotone function Q. Since V (q�;0; r�;0H ) � 0
they also generate a non-negative aggregate virtual surplus.

Suppose alternatively that V (q�;0; r�;0H ) < 0. Then, there exists �
� > 0 for which V (q�;�

�
; r�;�

�

H ) =

0. To see why, notice �rst that if V (q�;0; r�;0H ) < 0, then it must be the case that a signal is

purchased for a set of type pro�les with a non-zero measure. Notice also that for any signal

(q; rH), the value of L̂ (de�ned in Equation 18) increases in each player�s type (via w). Taken
together, these facts imply that when � = 0, the maximum of L̂ is strictly positive for all type
pro�les in a neighborhood of �max = (1� p; : : : ; 1� p). Suppose now that � ! 1. Because
for any type pro�le � that is close to �max, the value of w (�;1) is close to the value of w (�; 0)
(which is close to 1 � p), and because c is continuous, then when � ! 1 the maximum of L̂
is strictly positive (and bounded away from zero) for all type pro�les in the neighborhood of

�max. Thus, when � ! 1, Equation (33) implies that L(q�;�; r�;�H ; �) > 0 and Equation (32)

implies that V
�
q�;�; r�;�H

�
> 0. Finally, notice that V (q�;�; r�;�H ) is continuous in �. This is

because, for every �: (i) the optimal signal q�;� (�) ; r�;�H (�) is continuous in �,29 and (ii) V is

continuous in q (�) and r (�). Since we started by assuming that V (q�;0; r�;0H ) < 0, then the

continuity of V (q�;�; r�;�H ) in � implies that there exists �
� > 0 for which V (q�;�

�
; r�;�

�

H ) = 0. By

the Lagrangian Su¢ ciency Theorem, the optimal signal is then characterized by the functions

q�;�
�
and r�;�

�

H .

For completeness of the argument we now explain why the Lagrangian Su¢ ciency Theorem,

adapted to our problem�s setting, implies that q�;�
�
; r�;�

�

H are the optimal signal functions. To

see this, notice that since V (q�;�
�
; r�;�

�

H ) = 0 then L(q�;�� ; r�;�
�

H ; ��) = 1
1+��W (q

�;�� ; r�;�
�

H ). Since

q�;�
�
and r�;�

�

H maximize the integrand of L (�; �; ��) pointwise (that is, for every type pro�le �),
then L(q�;�� ; r�;�

�

H ; ��) � L (q; rH ; ��) for any two signal functions q and rH . Since our problem�s
constraint requires the signal functions q and rH to generate a non-negative aggregate virtual

29To see this, notice that for any �, the values of q� (�) and r� (�) depend on � only thorough w (�; �), and as
the analysis in Part I suggests they are continuous in w.
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surplus (i.e. V (q; rH) � 0), then L (q; rH ; ��) = 1
1+��W (q; rH) +

��

1+��V (q; rH) �
1

1+��W (q; rH).

Taken together, these observations imply that W (q�;�
�
; r�;�

�

H ) � W (q; rH) for any two signal

functions q; rH that satisfy V (q; rH) � 0.�

Proof of Proposition 3

By Corollary 2, there exists an optimal auxiliary mechanism in which truthtelling is a dominant

strategy. Consider an actual mechanism with the same functions q�, r�H and r
�
L and the same

transfer rules (the only di¤erence between the auxiliary and actual mechanisms is that in the

latter the players are not bound by their report in the ensuing voting game). We will show that

truthtelling is a dominant strategy also in the actual mechanism.

Assume, by contradiction, that truthtelling is not a dominant strategy in the actual mech-

anism. This means that there is a type �i of player i that prefers to report some �0i 6= �i in the
actual mechanism, but not in the auxiliary mechanism, when the other players report some ��i
(which may not coincide with their true types).

It cannot be that q�(�0i; ��i) = 0 (to simplify the notation we omit throughout this proof the

dependence of q�, r� and r�L on the value of �
�). To see why, note that when no information is

acquired (i.e., q�(�0i; ��i) = 0) player i prefers the action a = 0 in the voting game that follows

the actual mechanism. But this is precisely the action that the auxiliary mechanism chooses

when q�(�0i; ��i) = 0. Since player i does not want to deviate and report �0i in the auxiliary

mechanism, he has no incentive to do so in the actual mechanism.

Suppose that q�(�0i; ��i) > 0. When the posterior belief r
�
L(�

0
i; ��i) is realized, the auxiliary

mechanism votes for a = 0 on player i�s behalf. But since r�L(�
0
i; ��i) < p this is also the action

that player i prefers in the voting game that follows the actual mechanism. Suppose then that

the posterior r�H(�
0
i; ��i) is realized. Recall that since signals that are purchased in the optimal

auxiliary mechanism are SP then r�H(�
0
i; ��i) � 1� (�0i; ��i)

(n�m+1) � p. If for such a posterior,
player i votes for a = 1 in the second stage game following the actual mechanism, then again his

action coincides with the action that the auxiliary mechanism chooses for him. Therefore, for

i to have a pro�table deviation in the actual mechanism but not in the auxiliary mechanism,

it must be the case that after r�H(�
0
i; ��i) > 1 � (�0i; ��i)

(n�m+1) player i prefers to vote for

a = 0. This means that player i of type �i strictly gains by increasing the chances of the default

action. He may further increase his net utility if m(�0i; ��i)+ ti(�
0
i; ��i) < m(�i; ��i)+ ti(�i; ��i).

Since by monotonicity of q� we have q� (0; ��i) � q� (�i; ��i), and since m(0; ��i) + ti(0; ��i) �
m(�i; ��i) + ti(�i; ��i) (which immediately follows from the fact that type 0 does not want to

report �i in the auxiliary mechanism), then the most pro�table deviation is to report �0i = 0.

If q� (0; ��i) < q� (�i; ��i) or m(0; ��i) + ti(0; ��i) < m(�i; ��i) + ti(�i; ��i) then player i has

a pro�table deviation already in the auxiliary mechanism by reporting that his type is 0. This
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contradicts truth-telling being a dominant strategy. Otherwise, player i is indi¤erent between

reporting the truth and his most pro�table deviation in the actual mechanism, contradicting

our initial assumption that player i has a pro�table deviation in the actual mechanism. We

have therefore established that truthtelling is a dominant strategy in the actual mechanism.

Finally, note that in the optimal auxiliary mechanism in which truthtelling is a dominant

strategy the budget balance constraint is satis�ed only ex-ante. Therefore, the budget of the

actual mechanism de�ned above is also balanced only ex-ante. However, since truthtelling is a

dominant strategy in the actual mechanism then it is also a Bayesian Nash equilibrium. Thus,

by Borgers (2015, p.47), we can modify the transfers to satisfy ex-post budget balanceness

without a¤ecting the interim expected transfers, and hence, truthtelling remains a Bayesian

Nash equilibrium. Furthermore, the individual rationality of the auxiliary mechanism also

carries over to the real mechanism. Thus, the resulting actual mechanism satis�es incentive

compatibility, individual rationality and it is budget-balanced ex-post. Since, as we explain in

the text, the expected surplus that is achievable by the optimal actual mechanism is bounded

above by the expected surplus that is achievable by the optimal auxiliary mechanism, it follows

that the actual mechanism we de�ned above is the optimal one. �

Proof of Proposition 4

We prove each of the three cases separately.

Case (i). Consider any type pro�le � such that �i < " for some small " > 0 and for all

i 2 f1; : : : ; ng. The SP requirement implies that, if a signal is acquired for this type pro�le,
then rH � 1��(n�m+1) > 1�". To check whether acquiring such a signal is better than staying
uninformed, we evaluate the derivative of L̂ (Equation (18) with respect to q, for values of
rH � 1� " and of q > 0:

L̂1 (q; rH ; w (�; ��)) = rH � (1� w (�; ��))�
1

n
c1 (q; rH) < 1� (1� ")�

1

n
c1 (q; rH) (34)

< "� 1

n
c1 (0; 1� ") , (35)

where the �rst inequality is because rH < 1 and w (�; ��) < ", and the second inequality is

because c11 > 0 and c12 > 0. Since c1 (0; 1) > 0,30 and because c is continuously di¤erentiable,

then for " su¢ ciently small, " < 1
n
c1 (0; 1� ") = �

n
ĉ1 (0; 1� "). Thus, for small values of ",

L̂1 (q; rH ; w (�; ��)) < 0 for all of rH � 1� " and q > 0, implying that decreasing q increases
the value of L̂. Therefore, acquiring no signal is better than acquiring any informative signal

30To see this, notice that c1 (0; p) = 0 and c12 > 0. In our leading speci�cation, where the cost function is
proportional to the mutual information between the signal realization and the state, we have that c1 (0; 1) =
�� ln (p).
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for the type pro�le �.

Case (ii). Consider the type pro�le � for which �1 = : : : = �n = (1� p). Notice that
w (�; ��) = 1 � p, regardless of ��. Notice also that since 1 � �(n�m+1) = p, the SP constraint
has no bite for the type pro�le �, because any signal with rH � p is supermajority-persuasive.
Therefore, the optimal signal for �, i.e. q� (�) and r�H (�), is the signal that maximizes:

L̂ (q; rH ; (1� p)) = q (rH � p)�
1

n
c (q; rH) = q (rH � p)�

�

n
ĉ (q; rH) . (36)

When � is su¢ ciently small, the maximum of (36) is strictly positive and is attained at q� >

0 and r�H > p. Therefore, for the type pro�le �, acquiring a signal is better than staying

uninformed.

Consider now any type pro�le �0 that is �close to�� in the sense that �0i > (1� p) � " for
some small " > 0 and for all i 2 f1; : : : ; ng. Since the maximizers of L̂ are continuous in w
(because of P3; see also the discussion in footnote 27), and because w is continuous in each of

the components of the type pro�le, then q�H (�
0) is close to q�H (�), and r

�
H (�

0) is close to r�H (�).

This implies that for the type pro�le �0, acquiring a signal is better than staying uninformed.

Also, the optimal signal for �0 is SP but not MSP. This is because, when " is su¢ ciently small,

r�H (�
0) > p+ " > 1� (�0)(n�m+1).

Case (iii). Consider the type pro�le � for which �1 = � � � = �n�1 = 0 and �n = 1� p. There
exists �� such that for all � < ��: (i) the multiplier ��, de�ned in Proposition 2, is close to

zero such that w (�; ��) > (1�p)
2n
, and (ii) � < (1�p)

4�ĉ1(0;1) .
31 Suppose that � < ��. Since m > 1, the

SP condition implies that, if a signal is acquired for the type pro�le �, then it must be that

r�H (�) = 1. To check whether acquiring a signal with rH = 1 is better than staying uninformed,

we evaluate the derivative of L̂ with respect to q, at rH = 1 and q = 0:

L̂1 (0; 1 ; w (�; ��)) = 1� (1� w (�; ��))�
�

n
ĉ1 (0; 1) >

(1� p)
2n

� �
n
ĉ1 (0; 1) >

(1� p)
4n

> 0,

where the �rst inequality is because w (�; ��) > (1�p)
2n

and the second inequality is because

� < (1�p)
4�ĉ1(0;1) . Thus, when r

�
H (�) = 1, the value of q� (�) is strictly positive, and acquiring a

signal with rH = 1 is better than staying uninformed. The fact that c2 (q; 1) = 1 for all q,

implies that the derivative of L̂ with respect to rH , evaluated at rH = 1 and q = q� (�) is

negative, i.e. q� (�)� 1
n
c2 (q

� (�) ; 1) < 0. Therefore, the signal q� (�) ; r�H (�) is not interior and

the MSP condition is strictly binding.

Consider now any type pro�le �0 that is �close to� � in the sense that �0i < " and �0n >

(1� p) � " for some small " > 0 and for all i 2 f1; : : : ; n� 1g. As before, the fact that the

31Note that ĉ1 (0; 1) is �nite because c1 (0; 1) is �nite.
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maximizers of L̂ are continuous in w, and w is continuous in each of the components of �,

implies that the interior maximize of L̂ violates SP, and that in the optimal signal MSP is
binding, i.e. r�H (�

0) = 1 � (�0)(n�m+1). Thus, r�H (�0) is close to r�H (�0), and q� (�0) is close to
q� (�) and therefore acquiring an MSP signal is better than staying uninformed. �
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