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Abstract

We consider the problem faced by a group of players who bargain over what public

signal to acquire before deciding on a collective action. The players di¤er in their pri-

vately known state-dependent payo¤s from taking the action, and therefore di¤er also in

their willingness to pay for the public signal. We take a mechanism design approach to

characterizing the e¢ cient frontier of outcomes achievable via bargaining over informa-

tion. We identify novel distortions in the optimal information structure that arise from

the information asymmetry and from the fact that after the signal is realized, the outcome

is determined in equilibrium of a subsequent voting game.

Keywords: Collective decision-making, Mechanism design, Information design, Ra-

tional inattention, Public good provision.

1 Introduction

There are many situations in which a group of individuals needs to take a collective decision

in the face of uncertainty. In such situations, the group members often want to have some

information presented to them prior to taking the decision. However, collecting and processing

information is costly in terms of time, e¤ort, or money, and the group members typically have

di¤erent preferences over the �nal outcomes of their decision. How should the group members

decide what information to acquire and how to distribute its cost? Despite being ubiquitous,

this form of �collective bargaining�over information is largely underexplored in the literature.

This paper takes a preliminary step toward understanding the outcomes of such bargaining.

Consider for example a household that needs to make an important decision such as whether

to have a child, whether to send their child to a non-standard educational environment, or

whether to relocate. Such decisions typically depend on many unknown factors and hence

the couple may want to invest resources in acquiring some information about them. While

both partners typically want to take the �right decision,�each may not necessarily know how
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intensely the other feels about making the �wrong�decision. How informed would the couple

choose to be? Would they choose to acquire the optimal information structure? How would

they divide the burden of collecting and processing the information?

As another example, consider a group of division heads in some �rm who need to decide

whether to undertake some project, develop a new product, or enter a new market. Because

of the uncertainty regarding the right decision, the division heads may want to carry out a

pilot project that involves all the divisions (e.g., software, hardware, product, marketing, etc.).

While all division heads want to make the right decision, they typically di¤er in the price they

pay in the case of a failure (which oftentimes is known only to each devision head). Because

conducting a pilot is costly, the devision heads need to agree on its scale and goals and how to

divide the labor and costs among them. What characterizes the information that the optimal

pilot reveals? How does the rule for deciding on the collective action (e.g., whether undertaking

the project requires the consent of all devision heads or just a majority of them) interact with

the devision heads�decision on the pilot characteristics?

Other examples with similar features include partners in a �rm who need to vote on a merger

or an acquisition and hence need to agree on which consulting �rm to hire for market research

(and what research it will conduct), or committee members who need to vote on whether to

hire a candidate and hence deliberate over what information to collect about the candidate.

In these situations and others, it is natural to ask what characterizes the information that the

group acquires? How is the acquired information a¤ected by the fact that the group members

will base their collective decision on it? What does the optimal signal look like, compared to

the case in which the players�preferences are commonly known?

To address these questions, we propose the following stylized model. A group of players

is faced with a binary decision: whether or not to depart from a status quo (the �default

action�). There are two states of nature, and all players would like the action to match the

state. However, they di¤er in their disutility from a mismatch, and this disutility is privately

observed. Prior to making the binary decision, the players have the opportunity to collectively

acquire a costly public signal about the state. The players then proceed in two steps. First, they

bargain over which signal to acquire and how to distribute its cost. Second, they all observe the

signal realization and vote on the binary decision, where a supermajority is required to depart

from the status quo.1 If no information is acquired, all players prefer the status quo.

Our analysis abstracts from the particular protocol of bargaining over information by fol-

lowing Myerson and Satterthwaite (1983) and taking a mechanism design approach to exploring

the bounds on the �constrained�social surplus that the group can achieve. That is, we charac-

terize the optimal feasible mechanism for deciding which signal to acquire, taking into account

1In the paper the term �supermajority�refers to a minimal threshold of m votes that is required to depart
from the status quo, where m � 1.
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the incentive and participation constraints as well as the second-stage voting game.

Within this framework, we draw the following insights. Even if the group members�prefer-

ences are known, the fact that a supermajority vote is required to depart from the status quo

leads to a distortion of the information that is acquired (relative to the unconstrained socially

optimal signal). Furthermore, the higher the supermajority requirement, the lower the social

welfare. When the participants�disutility from making the wrong decision is unobservable, an

incentive to free ride arises in the sense that an individual will want to behave as if the infor-

mation is not that important to him so that others will bear its cost. On the one hand, this

further lowers the likelihood of acquiring information (relative to the case in which preferences

are known) and makes the group even more conservative in departing from the status quo. On

the other hand, when the group does decide to leave the status quo, it is more con�dent in

its decision (i.e., the probability that this is the right decision is higher relative to the case of

complete information).

The socially optimal bargaining outcome exhibits the following features. In one subset of

the type space, no signal is acquired. In a second subset, the acquired signal is at its optimal

�interior�solution: its structure is optimal given the cost, it attenuates the incentives to free-

ride, and it is always instrumental (that is, it always has at least one realization for which the

collective action is di¤erent than if no signal is acquired). In a third subset of the type space the

acquired signal is distorted to be minimally �supermajority persuasive�: it is chosen such that

one of its realizations just ensures supermajority support for the non-default action. This last

subset illustrates the distortion caused by the presence of a second-stage voting game, which is

beyond the control of the designer.

In addition to characterizing the solution to the collective bargaining over information, this

paper also contributes to three di¤erent strands of literature. First, our group decision problem

may be viewed as a variant of rational inattention à la Sims (2003). While this literature has

focused exclusively on individual decision makers, in many of the applications the decision is

inherently made by a group (a management team, a household, etc.). Our paper introduces a

framework of collective rational inattention: a group needs to agree on which signal to acquire,

taking into account the trade-o¤ between the cost and bene�t of more precise information.

There are three key di¤erences between the problem we study and the problem of individual

rational inattention. First, in our setting, the �nal decision following a signal realization is

determined by an equilibrium in a game. Second, the group members may disagree on the

bene�t from each signal. Finally, in order to aggregate the individuals�willingness to pay for

signals, the individuals need to disclose their private information.

Second, we expand the scope of the information design literature by introducing a new

design problem with the following features: (i) the �receivers� themselves have to choose the
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optimal information structure (i.e., there is no �sender�), (ii) the optimal information structure

depends on the receivers�private types, and (iii) information is costly.

Finally, this paper introduces a new class of public good provision problems. In our setup

the public good is information: each player bene�ts from the public signal, but prefers others to

bear its cost. However, unlike a standard public good problem, here the public good (the signal)

does not directly produce utility for the agents, but it is instrumental in making a more informed

choice in a subsequent game (the voting game). Additionally, in contrast to a �standard�public

good, in our model the players do not necessarily agree on the ranking of (noisy) signals, even

when the cost is ignored (although they all agree that full information is the best signal). This

is because they may disagree on the optimal collective action for each realized posterior belief.

Lastly, the public good in our framework is a multidimensional object. Nevertheless, we manage

to �map�the problem back to one that can be solved using Myersonian techniques.

Related literature. As mentioned above, our analysis combines information design with mecha-

nism design. In a linear environment with a single player, Kolotilin et al. (2017) show that the

optimal signal can be implemented without relying on the player�s private information. How-

ever, it is well known that in environments with multiple interacting players (e.g., Bergemann

and Morris, 2013; Alonso and Câmara, 2016; Taneva, 2019; Mathevet, Perego, and Taneva,

2020) ignoring the players�private information is suboptimal. Candogan and Strack (2021)

show that when there are more than two possible actions, ignoring the player�s private infor-

mation is suboptimal even if there is only one receiver.

Several recent works have addressed the problem of designing information for a group of

voters. Notable papers include Wang (2013), Schnakenberg (2015), Alonso and Câmara (2016),

Bardhi and Guo (2018), Chan et al. (2019), and Arieli and Babichenko (2019). These studies

characterize the signal that maximizes the probability that in equilibrium voters vote on the

outcome favorable to the sender. They di¤er in whether the designed signals are private or

public, and in the class of voting rules that are considered. There are two key di¤erences

between these papers and ours. First, in these papers the voters�state-dependent utilities are

commonly known (i.e., voters have no private information) and hence, in order to design the

optimal signal, there is no need to elicit information from the voters. Second, in these papers

signals are costless, and the problem is to �nd the signal that induces voters to coordinate on

an equilibrium that is favorable for the sender.

The question we study is also related to the problem of designing voting rules that incentivize

the voters to acquire costly information. Persico (2004) characterizes the optimal size and voting

threshold that e¢ ciently aggregates information when each voter needs to pay a cost to acquire

a private binary signal. Gershkov and Szentes (2009) extend the analysis to a broader class of

voting mechanisms. Our approach di¤ers in that voters�willingness-to-pay for information is
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private and the signal they acquire is public. We �x the voting rule and look for the optimal

signal, taking into account that this signal depends on the voters�private information, and

that the signal realization a¤ects voting behavior. Relatedly, Godefroy and Perez-Richet (2013)

study a model where in the �rst stage a group of asymmetrically informed individuals vote

on whether to acquire full information on their payo¤s from a proposal and, if information is

acquired, they proceed to vote on the proposal. They show that the likelihood of remaining with

the status quo increases with the supermajority requirement in the �rst stage and decreases

with the supermajority requirement in the second stage.

An alternative approach to the study of collective information acquisition is analyzed by

Chan et al. (2018). They consider a dynamic model where at each point in time a group

receives an exogenous signal and needs to vote on whether to stop and vote on a binary action,

or to continue and receive additional signals. Unlike us, they study a stopping problem in which

the signal is exogenously given and the players�preferences are commonly known.2 Relatedly,

Gersbach (2000) considers a group with known preferences who can either accept a policy with

no information or defer the vote on the policy until after the state is realized.

Finally, our paper contributes to the literature that examines how strategic players free-

ride on the information acquisition of others (see, e.g., Bolton and Harris, 1999; Bergemann

and Välimäki, 2000; Décamp and Mariotti, 2004; Aghamolla and Hashimoto, 2020). The key

di¤erence is that in all of these works, agents privately decide either to acquire costly information

(for example by investing in R&D or assessing the pro�tability of an industry), or to wait and

learn from the actions of other players. By contrast, in our work the players jointly decide

on what public signal to acquire and free-riding occurs by pretending that information is less

valuable. In addition, our innovation is that we characterize the socially optimal information

structure, and identify the optimal implementable information structures when players�types

are private.

Outline. The remainder of the paper is organized as follows. Section 2 presents the model,

solves the central-planner benchmark, and provides an illustrative example. The mechanism-

design problem is presented in Section 3 and solved in Section 4. The latter section contains

the lion�s share of the theoretical analysis. We provide an intuitive summary of the main steps

of the analysis at the beginning of the section, to allow readers who are more interested in the

qualitative form of the solution to skip directly to Section 5, which characterizes and discusses

properties of the optimal signal structure. In Section 6 we discuss some key ingredients of our

model and the challenges involved in extending our framework in several directions. Concluding

remarks are presented in Section 7. All proofs are relegated to the appendix.

2For additional related works that take a collective search approach to sequential information gathering by
a group, see the references in Chan et al. (2018).
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2 Model

Our model consists of the following components.

Players and payo¤s. There are n players who have to jointly agree on a decision a 2 f0; 1g.
Following the literature on strategic voting (most notably, Feddersen and Pesendorfer, 1998),

we assume that each player�s payo¤ from the collective action, ui, depends on the joint action,

on his type �i 2 � � [0; 1], and on the state of the world ! 2 f0; 1g as follows:

ui(a; !; �i) =

8><>:
1 if a = !

�i if a = 1; ! = 0

1� �i if a = 0; ! = 1

Each player has quasilinear preferences over the collective action and any additional costs he

incurs.

We assume that the players do not observe the realization of ! and have the common prior

belief that the probability of ! = 1 is p 2 (0; 1). In addition, each player i privately and

independently draws a type �i from a common distribution F on the interval � = [0; 1� p]
(we explain below why we assume that �i � 1 � p). We assume that F admits a density f

that is strictly positive, continuously di¤erentiable, and bounded over [0; 1� p]. Let v (�i) �
�i � (1� F (�i)) =f (�i) denote the virtual valuation of the player�s type �i. We assume that F
is regular, i.e., v (�i) is increasing in3 �i.

Our speci�cation of the utility function ui implies that player i weakly prefers the joint

decision a = 1 if and only if, given any information he has, his posterior belief on ! = 1 is at

least 1 � �i. This follows from observing that if the posterior belief on ! = 1 is r, then the

action a = 1 yields an expected payo¤ of r � 1 + (1� r) � �i whereas the action a = 0 yields an
expected payo¤ of r � (1� �i) + (1� r) � 1. From our assumption that p � 1 � �i for every �i,
it follows that without further information on the state each player prefers the action a = 0.

This gives a clean benchmark that, without additional information, the group remains with the

status quo.

Costly signals. Before making the joint decision (in a manner described below), the players
have the opportunity to acquire a public signal on the state !. A signal can be represented

by a probability distribution over posterior beliefs on ! = 1, such that the expected posterior

belief on ! = 1 equals the prior p.4 To simplify the exposition we assume that the distribution

3The assumption that F is regular simpli�es the analysis of the mechanism design problem that we introduce
later. It is a standard assumption in the mechanism design literature, where it guarantees that the solution to the
design problem satis�es a monotonicity condition that ensures incentive compatibility. In our setting, regularity
helps us prove that the solution to our design problem indeed satis�es a similar monotonicity condition.

4In our collective decision-making setting, there is no loss of generality in representing a signal as a distribution
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is discrete, with �nitely many possible realizations.5 We denote by qj the probability that the

posterior belief on the state ! = 1 is rj and by J the total number of posteriors. We then haveX
j2f1;:::;Jg

qj � rj = p, (1)

where 0 < qj � 1 and 0 � rj � 1 for all j 2 f1; :::; Jg, and
P

j2f1;:::;Jg qj = 1. The players can

decide to acquire no information. This option is equivalent to choosing the degenerate signal

J = 1, q1 = 1, and r1 = p.

Acquiring and/or analyzing signals is costly. Following the rational inattention literature (in

particular, the posterior-based approach of Caplin, Dean, and Leahy, 2020), we assume that a

signal�s cost is a function of the induced distribution over posterior beliefs. For now we assume

only that given J; the cost function c
�
f(qj; rj)gJj=1

�
is twice continuously di¤erentiable and

monotone with respect to the Blackwell ordering, and that acquiring no information is costless

(for our main characterization result we will impose additional structure). For concreteness,

and to be able to give illustrative examples, we will occasionally use a cost speci�cation that

is proportional to the mutual information between the signal realization and the state. That

is, the cost of the signal f(qj; rj)gJj=1 will be given by the expected KL-divergence (or relative
entropy) between the posteriors and the prior:

c
�
f(qj; rj)gJj=1

�
= � �

PJ
j=1qjDKL(rj jj p), (2)

where � is some positive constant, and6

DKL(r jj r0) � r log
r

r0
+ (1� r) log 1� r

1� r0 . (3)

This speci�cation captures situations where there is an overwhelming amount of information

available and the di¢ culty is in processing and understanding that information (see, e.g.,

Máckowiak, Matµejka, and Wiederholt, 2018). As is well known, the cost function given by

(2) is monotone with respect to the Blackwell ordering. However, our analysis applies to a

over posteriors that average to the prior belief. First, as long as the mean posterior equals the prior, there is
some signal that generates the distribution over posteriors. Second, our preference speci�cation implies that
voting for a = 1 is dominant for type �i if and only if the realized posterior is at least 1� �i: Thus, for a given
tie-breaking rule, each player�s decision, and hence the �nal outcome, is pinned down by the realized public
posterior.

5We can extend the analysis to signals with in�nitely many realizations (posteriors). Apart from a¤ecting
notation, this requires a change only in the proof of Lemma 1, where instead of merging a pair of posteriors, we
need to merge all the posteriors above 1� �(n�m+1); and all the posteriors below 1� �(n�m+1):

6Since there are only two states, we represent a distribution over the states by the probability on ! = 1.
Thus, the divergence between the two distributions can be written as a function of the probability that each
distribution assigns to the state ! = 1.
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broader class of cost functions (P1�P3 in Section 4.2 give the general su¢ cient conditions for

the cost function). For example, it is easy to verify that these conditions are also satis�ed by a

cost function that is proportional to the variance of the induced posteriors on the high state.

The cost of the signal has to be covered by the players. We denote by ti the cost borne by

player i, so that7
Pn

i=1ti = c
�
f(qj; rj)gJj=1

�
. Thus, the net payo¤ of type �i from action a in

state ! is given by ui(a; !; �i)� ti.
The assumption that the cost of information can be shared among the players (or that

players can compensate each other using another sort of transferable utility) is crucial for our

analysis. Sharing this cost can be interpreted, for example, as sharing the monetary cost of the

signal (e.g., when di¤erent departments in a �rm use their budgets to pitch in for the cost of

hiring a consultant); or as reallocating chores, consumption, or resources (e.g., in a household

or a �rm); or as sharing the collective e¤ort of processing the acquired information (e.g., the

amount of documents that need to summarized, or the time involved in organizing the data).

Agreeing on a signal. The group members decide which signal to acquire and how to

distribute the costs through some form of bargaining. In doing so they take into account that

each of them has private information and that the signal realization will a¤ect the decision

on the collective action. As we explain in the next section, our analysis is not tied to any

particular bargaining protocol. Instead, we take a mechanism design approach to characterizing

the bargaining outcomes that maximize the constrained social surplus.

We assume that when a player refuses to take part in the discussion of what signal to acquire,

he prevents the group from making a decision on the signal. This assumption, which is typical in

almost all public good settings (e.g., Mailath and Postlewaite, 1990; Hellwig, 2003), e¤ectively

means that each player has veto power with respect to acquiring the public signal. Notice that,

with no additional information, the group will stick with the status quo. For instance, recall the

example of several department heads that need to agree on a pilot study. If the pilot requires

experts from every department (software, hardware, etc.) then any department head can block

the pilot by refusing to allocate manpower. With no pilot, the �rm will not undertake the

project. Hence, by opting out of bargaining a player expects to get the payo¤ of the status-quo

option. This assumption is helpful for tractability since it �xes the payo¤ of the outside option

of a player in a way that is independent of the other participants. We further discuss this

assumption in Section 6.2.

Voting. After the players observe the realization of the public signal (if one is acquired), they
vote on the collective decision using an m-majority rule: the action a = 1 is chosen if and only

7While we require that the players exactly cover the cost of the signal, the analysis would remain unchanged
if instead we were to impose the weaker requirement that the cost of the signal be at most the sum of costs
borne by the players.
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if at least m players vote for this option. Otherwise, the default action a = 0 is chosen. We

assume that the players do not choose weakly dominated strategies. In addition, whenever a

player is indi¤erent between a = 1 and a = 0, he breaks ties in favor of a = 1. Thus, player i

votes for a = 1 if and only if the realized posterior belief that the state is ! = 1 is at least 1��i.
Consequently, the alternative a = 1 is chosen if and only if the realized posterior belief that the

state is ! = 1 is at least 1� �(n�m+1), where �(k) is the kth smallest element in � = (�1; :::; �n).
For example, if choosing the non-default action a = 1 requires unanimity, i.e., m = n, then for

this action to be chosen the realized posterior belief has to be larger than 1� �(1), where �(1) is
the smallest element in �. Note that, given �, a signal induces a probability distribution over

the outcomes of the vote.

We assume the group cannot make any transfers that are conditional on their votes. This

can follow from institutional constraints that prohibit such vote buying, or because the votes are

secret, or because such contractual arrangements cannot be enforced (the case of contractible

votes is covered by the central-planner benchmark below). In light of this, the group can only

bargain over what information to acquire (and not simultaneously on both the information

and the ultimate action). We therefore take the voting stage as given, while allowing for any

supermajority requirement.

Optimal bargaining outcome. Note that the players�preferences are quasilinear and that
the signal realization fully determines the voting outcome. It follows that the ex-ante social

surplus that is induced by a mapping from types to signals equals the sum of the players�ex-

ante expected utilities, where utilities are evaluated according to the equilibrium outcome in

the ensuing voting game. We say that a bargaining protocol is socially optimal if the mapping

it induces from types to signals maximizes the ex-ante social surplus.

Our model strikes a balance between being su¢ ciently simple to analyze and being su¢ -

ciently general to accommodate a broad range of situations.8 In Section 6 we discuss the role

8For instance, as we mention in the Introduction, our model accommodates situations of household decisions
that are made in the face of uncertainty, where the partners di¤er in their attitudes toward �mistakes� and
their bargaining involves some sort of �transfers.�These assumptions are consistent with an extensive literature
on intra-household bargaining; see, e.g., Doepke and Kindermann (2019) and Ashraf et al. (2021). Also, our
model �ts both the case in which partners are symmetrically informed about each other�s preferences (that is,
attitudes toward mistakes) and the case in which they are not. Assuming that spouses who share a household
may be asymmetrically informed about preferences is consistent with Ashraf et al. (2021) who argue, in the
context of fertility decisions, that spouses may have di¤erent perceptions of costs and bene�ts of decisions and
that these perceptions are private information.
In our department heads example, our model is consistent with situations in which the �rm will undertake

some project only if a majority (or all) of the department heads support it. Conducting a pilot project is
oftentimes costly, requires a joint e¤ort from all departments, and its outcome is publicly observed. Indeed, a
department head may be skeptical about the bene�t of the pilot, but she may be willing to go ahead with it
if she is appropriately compensated, for example by temporarily allocating manpower or other resources to her
department. However, if after a pilot is run, the department head is still not convinced that the project is worth
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Figure 1: Feasible signals

of some key features of our model in the analysis, suggest possible directions for extending the

model, and explain the technical challenges involved in pursuing them.

2.1 Simplifying the domain of signals

Our �rst observation is that signals that induce only two posterior beliefs on ! = 1 (one on

either side of the prior belief) dominate signals with more posterior beliefs on ! = 1.

Lemma 1 For any signal that induces more than two posterior beliefs, there exists a signal
that induces only two posterior beliefs, generates the same distribution over actions for each

realization of state and types, and has a strictly lower cost.

This result is straightforward in standard information design problems where signals are

costless. In such settings all that matters is the distribution over the actions in each state,

and this distribution can be replicated by signals that induce two posterior beliefs when there

are only two actions. In our setup, signals are costly and the cost depends on the entire

distribution of posteriors. However, our assumption that the cost increases with Blackwell

informativeness implies that the optimal mechanism does not need to employ signals with more

than two posteriors (for an analogous result in a model of individual rational inattention see,

e.g., Lemma 1 in Matµejka and McKay, 2015).

In light of this observation, we restrict attention to signals that induce at most two posterior

beliefs.9 Thus, a signal can be represented by a pair (q; rH), where q 2 [0; 1] is the probability

undertaking, it is unlikely that any transfer will persuade her to risk her reputation for a project that she thinks
will turn out to be a failure.

9Because the players are risk neutral, if we switch from a signal with more than two posteriors to a cheaper
signal that induces only two posteriors, it is possible to readjust the transfers between the players such that the
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that the posterior belief on ! = 1 is rH � p. Equation (1) then implies that with probability
1 � q the other posterior belief induced by the signal is rL � (p � qrH)=(1 � q) � p. Thus,

when the realized posterior belief is rL all players agree that the optimal action is a = 0. When

the realized posterior belief is rH there are m players who prefer a = 1 to a = 0 if and only

if rH � 1 � �(n�m+1). Notice that, since rL � 0, it must be the case that p � qrH . Figure 1

illustrates the set of all possible signals, depicted on the plane of q and rH .

Choosing q = 0 or q = 1 is equivalent to purchasing no signal. The cost in this case is 0 by

assumption. We say that a signal is informative if q 2 (0; p=rH ] and rH > p. Given m, we say
that a signal is instrumental for a type pro�le � if for at least one of the signal�s realizations

there is an m-majority for the non-default action a = 1. This means that a signal (q; rH) is

instrumental for � if rH � 1� �(n�m+1) and q 2 (0; p=rH ].

2.2 A central-planner benchmark

To better understand the implications of the players�private information and the supermajority

requirement for departing from the status quo, we begin by analyzing the benchmark where a

central planner, who knows the players�types, chooses both the socially optimal signal and the

collective action as a function of the signal realization.

Given a type pro�le �, let � = 1
n

Pn
i=1 �i denote the average type in �. Clearly, if the planner

acquires a signal, it is necessarily instrumental: the posterior rH has to lead to the action a = 1

and the posterior rL has to lead to a = 0 (otherwise, the players incur a cost but ignore the

information). The expected per-capita social welfare from purchasing an instrumental signal

(q; rH) for the type pro�le � is given by

q �
�
1 � rH + � � (1� rH)

�
+ (1� q) �

��
1� �

�
rL + (1� rL)

�
� 1

n
c (q; rH) . (4)

This expression is a sum of three terms. The �rst term is the total per-capita welfare when

the posterior rH is realized, which occurs with probability q. Since the planner takes the

action a = 1 in this event, the per-capita payo¤ is 1 with probability rH , and is � with the

complementary probability. The second term is the total per-capita welfare when the posterior

rL is realized, which occurs with probability 1� q. In this case, the action a = 0 is taken. The
third term is the per-capita cost.

Alternatively, if the planner does not acquire any signal, the players remain at the prior

beliefs and the planner takes the action a = 0. In this case, the per-capita social welfare is

1 � p�. The planner acquires information if the signal (q; rH) that maximizes (4) achieves a
social welfare above 1� p�.

decrease in cost is translated into a constant reduction in the interim payment of each player. This modi�cation
maintains ex-post budget balancedness, incentive compatibility, and interim individual rationality.

11



Assume that the cost function is given by Equation (2); then the planner�s solution is10

rH =
e
n
� � en� �

e
n
� � 1

; rL = min

(
e
n
�(1��) � 1
e
n
� � 1

; p

)
; q =

p� rL
rH � rL

. (5)

This implies that a signal is acquired whenever rL < p; which occurs if � > 1��
n
ln
�
p
�
e
n
� � 1

�
+ 1
�
.

The socially optimal signal structure exhibits the property that both rH and rL are decreas-

ing in �, whereas q is increasing in �. To get some intuition for this, note that when the average

type is higher, the social disutility from taking the action a = 0 when the state is ! = 1 is

higher. At the same time, the disutility from making the opposite mistake is lower. Therefore,

when the average type is higher, the action a = 1 is socially more desirable, which suggests that

q should be higher. For the same reason, higher types, who are biased toward action a = 1; are

willing to su¤er a reduction in rH (which lowers the con�dence that a = 1 is the right action

when this posterior is realized) in exchange for a reduction in rL (which raises the con�dence

that a = 0 is the right action when this posterior is realized). Of course, the precise argument

for the comparative statics of the signal with respect to the type pro�le also depends on the

properties of the cost function. Su¢ cient conditions for these comparative statics are provided

in Section 4.2.

The socially optimal signal also changes in an intuitive way as �, the scaler of the cost

function, changes.

Proposition 1 Assume that the cost function is given by Equation (2). Let � be a type pro�le
and �L < �H be two levels of the scaler of the cost function such that a signal is acquired for �

at both scaler levels. Then the signal for �L is more Blackwell informative than the signal for

�H : Furthermore, at the limit, as �! 0; the socially optimal signal that is acquired for any type

pro�le converges to the fully informative one.

2.3 An illustrative example

To illustrate what forces are at work in the absence of a central planner, consider the following

example. Suppose that there are only two players (i.e., n = 2), p = 0:5, and the cost function

is given by Equation (2) with � = 0:5.

The central planner benchmark. Suppose �rst that there�s a central planner, as described
above. For the type pro�le � = (0; 0), the planner�s decision is straightforward: since the action

a = 0 dominates the action a = 1 for both players in each state of the world, implementing

10These equations are directly obtained from the �rst-order conditions of the planner�s problem, which are
also given by (FOCq) and (FOCr) in Section 4.2 for the case of w = �. Also, notice that since � � 1 � p it
follows that rH 2 (p; 1).

12



a = 0 without acquiring any information is optimal. By contrast, for the type pro�le � =

(0:5; 0:5), acquiring some information is bene�cial for both players. A computation shows that

the signal that is given by q = 0:5 and rH � 0:88 maximizes (4) and is better than acquiring
no information.

Now suppose that the type pro�le is � = (0; 0:5). In this case, player 1 (weakly) prefers the

action a = 0 regardless of the state of the world, whereas player 2 prefers the action a = 1 when

his posterior belief on the state ! = 1 is greater than 0:5. The planner, who is not concerned

with the preferences of each player individually but rather with the aggregate social surplus,

chooses the signal that maximizes (4), provided that it is better than acquiring no information.

A computation shows that this signal is given by q � 0:24 and rH � 0:97. Intuitively, the social
harm from a mismatch when a = 1 is greater for the type pro�le (0; 0:5) than for the type pro�le

(0:5; 0:5). Thus, the optimal signal for (0; 0:5) leads to adopting a = 1 with a lower probability

(0:24 < 0:5), but whenever a = 1 is taken, it is done with greater con�dence (0:97 > 0:88).

A supermajority voting rule. Suppose now that there�s no planner and the players vote on
the collective action. Suppose further that a = 1 requires a unanimous agreement (m = 2). For

now, retain the assumption that types are commonly known. It is easy to verify that for the

type pro�les (0; 0) and (0:5; 0:5), where the players�interests are perfectly aligned, the optimal

signals are the same as those purchased by the planner.

Consider now the asymmetric pro�le (0; 0:5). In this case, the socially optimal signal (q =

0:24; rH = 0:97) is too weak to persuade player 1 to vote for a = 1. In other words, this

signal is not instrumental and is therefore useless: player 1 will thwart any attempt to deviate

from the status quo, regardless of the signal�s realization, even when a = 1 is the socially

optimal action. Indeed, when � = (0; 0:5) and a unanimous agreement is required, only signals

with rH � 1 � min (0; 0:5) = 1 are su¢ ciently strong to persuade the two players to vote for
a = 1 when the posterior rH is realized. The optimal signal in this case is q � 0:21, rH = 1.

Notice that this signal is distorted compared to the socially optimal one in order for the signal

to be instrumental. This observation raises a question: how does the voting stage a¤ect the

optimal signal in the more general case, and how does the distortion depend on the required

supermajority?

The asymmetric information distortion. Assume now that the players�types are private
information. Would the players agree to disclose their types if they knew that the optimal signal

will be acquired? While addressing this question requires some more involved computations, it

is not too di¢ cult to show that the answer is negative. Perhaps not surprisingly, the players may

be tempted to free-ride on each other by pretending to be a lower type, in order to reduce their

share in the signal�s cost. Indeed, as in the case of �standard�mechanism design, it is possible

to weaken the players�incentives to free-ride on each other, by distorting outcomes away from

13



their e¢ cient level (that is beyond the distortion required to make the signal instrumental).

Given the parameters of the example, assuming that the distribution F is uniform and letting

m = 2, it can be shown that it is (ex-ante) optimal not to acquire any signal when the type

pro�le is11 � = (0; 0:5). But what is generally the optimal way to distort a signal that is a

multidimensional object?

3 A mechanism for information acquisition

As explained in the Introduction, to characterize the constrained e¢ cient frontier of signals

that can be acquired through bargaining, we take a mechanism design approach that abstracts

from any particular bargaining protocol.12 By �constrained e¢ cient�we mean that we take as

given the ensuing voting game, which may lead to outcomes that are not socially e¢ cient ex

post.

In our setting, there is no loss of generality in restricting attention to direct revelation

mechanisms in the �rst stage of the players�interaction, i.e., when they decide on which signal

to acquire.13 We de�ne an actual direct mechanism to be a vector of functions (q; rH ; t1; :::; tn),

where q : �n ! [0; 1] ; rH : �n ! [p; 1], and ti : �n ! R for every i 2 f1; : : : ; ng such
that

Pn
i=1ti (�) = c (q (�) ; rH (�)). Thus, following a pro�le of reports �̂ = (�̂1; :::; �̂n), with

probability q(�̂) the players end up with the posterior probability rH(�̂) on the state ! = 1 and

with probability 1� q(�̂) they end up with the posterior probability rL(�̂) on that state, where
rL(�̂) � (p � q(�̂) � rH(�̂))=(1 � q(�̂)). In addition, each player i pays ti(�̂). We say that an
actual mechanism is optimal if it maximizes the expected social surplus, taking into account

the equilibrium of the subsequent voting game.

In the actual mechanism the designer cannot directly control the outcome of the second-

stage voting game because the group members cannot commit in advance to how they would

vote following any possible realization of the signal. Thus, a player who misreports his true

type to the mechanism (say, in order to reduce his share in the cost) retains his ability to

vote according to his true preferences in the second stage. As a step toward characterizing

the optimal mechanism, we proceed by considering auxiliary (direct) mechanisms in which, in

addition to choosing which signal to acquire and how to distribute the costs, the mechanism also

votes on behalf of the players in the second stage. Thus, an auxiliary mechanism e¤ectively

chooses the collective action a = 1 whenever rH � 1 � �̂(n�m+1), and the collective action
a = 0 otherwise. In other words, we assume that the players commit to vote according to their

11This observation foreshadows a result that will be formally presented in Corollary 2 below.
12That is, there is no �real�designer. The mechanism here is used as a method for characterizing the limits

of what the players can achieve by any protocol of bargaining.
13The mechanism is used only to select the public signal, and not the collective action, and hence the revelation

principle follows from standard arguments.
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reported types and not their true types.14 Our focus on direct auxiliary mechanisms follows

from the revelation principle, which holds in this environment.15

Formally, an auxiliary mechanism is an actual mechanism augmented by two decision func-

tions, aH(�̂) and aL(�̂), which are the collective actions chosen by the mechanism when the

posterior beliefs rH and rL are realized, respectively. Thus,

aH(�̂) =

(
1 if rH(�̂) � 1� �̂(n�m+1)

0 otherwise
(6)

aL(�̂) = 0. (7)

The highest expected surplus achievable by an auxiliary mechanism is weakly higher than the

highest expected surplus achievable by an actual mechanism. This is because any equilibrium

play path in the actual mechanism and the ensuing voting game can be replicated by the

auxiliary mechanism. The reason is that deviations from truth-telling are more costly in the

auxiliary mechanism than in the actual mechanism. In light of this, we begin by looking for

the auxiliary mechanism that attains the highest social surplus. We will then show that the

equilibrium that attains this surplus can be replicated by an actual mechanism and the ensuing

voting game.

Fix a player i and suppose that the remaining players report their types truthfully. The

expected utility of player i of type �i who reports �̂i is then given by

V (�i; �̂i) = E��i
h
q(�̂i; ��i) �

�
rH(�̂i; ��i) � u(aH(�̂i; ��i); 1; �i) + (1� rH(�̂i; ��i)) � u(aH(�̂i; ��i); 0; �i)

�
+ (1� q(�̂i; ��i)) �

�
rL(�̂i; ��i) � u (0; 1; �i) + (1� rL(�̂i; ��i)) � u (0; 0; �i)

�
� ti(�̂i; ��i)

i
(8)

where ��i 2 �n�1 represents the vector of true types of all players other than i, and E��i is
evaluated according to the probability distribution of the true types ��i.

Since we are interested in the auxiliary mechanism that maximizes the total surplus (subject

to the voting stage), it is useful to represent the players�payo¤s as the expected gains from

information (rather than the utility per se). This gain is computed relative to the case in which

the players do not participate in the mechanism and no information is acquired. Note that in

14In contrast to the actual mechanism, the auxiliary mechanism can decide on the collective action; however,
it is still constrained in terms of how it maps types to collective actions. For example, the auxiliary mechanism
cannot force the action a = 1: for any signal that is acquired, when rL is realized, it must choose a = 0.
15The auxiliary mechanism is a standard mechanism in the sense that it maps reports to �nal outcomes, and

hence the revelation principle applies. In fact, even if there was loss of optimality in restricting attention to
direct auxiliary mechanisms, it would not a¤ect our analysis since a solution to the optimal auxiliary mechanism
design problem only serves as an upper bound on the optimal actual mechanism.
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the latter case, the default action a = 0 is chosen and type �i�s payo¤ is p � (1� �i) + (1� p).
Thus, the gain from information of type �i of player i who reports �̂i is given by

U(�i; �̂i) = V (�i; �̂i)� (p � (1� �i) + (1� p)) (9)

To simplify the exposition, when all players report truthfully, we denote U (�i) � U(�i; �i).
The objective of the mechanism is to maximize the total ex-ante expected gain from signals

under truthful reporting, while taking as given the ensuing voting game:

nX
i=1

E�iU (�i) . (OBJ)

The auxiliary mechanism has to be ex-post budget balanced: the cost of any signal that

is acquired has to be fully covered by the players. In what follows we slightly weaken this

requirement and allow the auxiliary mechanism to be balanced only ex ante, so that the cost

of the acquired signal has to be covered only on average (that is, we allow the mechanism to

have a budget de�cit in some cases, so long as on average the costs are fully covered):

E�
nX
i=1

ti (�) = E� [c (q (�) ; rH (�))] (BB)

However, as is well known (see, e.g., Borgers, 2015, p.47), if a mechanism is ex-ante budget

balanced, one can modify the transfers to satisfy ex-post budget balancedness without a¤ecting

the interim expected transfers or the incentives for truthful reporting. That is, if a mechanism is

incentive compatible, individually rational, and ex-ante budget balanced, then there is another

mechanism that achieves the same allocation of types to signals, and which is also incentive

compatible and individually rational but is ex-post budget balanced. In light of this, we will

focus on ex-ante budget balancedness in the analysis that follows.

The players cannot be forced to participate in the mechanism. Since when a player opts out,

he gets the payo¤ of the status-quo option (evaluated according to the prior belief), it follows

that the gain from participation must be nonnegative for any type �i of any player i:

U (�i) � 0. (IR)

Finally, to guarantee that truth-telling is indeed an equilibrium, the following incentive

compatibility condition must hold:

U (�i) � U(�i; �̂i) (IC)

for any type �i of any player i, and for any report �̂i.

In sum, we look for an auxiliary mechanism that maximizes (OBJ) subject to the constraints

(IR), (IC), and (BB).
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4 Solving the design problem

In this section we characterize the mechanism that maximizes the ex-ante social surplus (taking

into account how the signal a¤ects the ensuing voting game). While the mechanism design

problem we study is not a conventional one, we nevertheless are able to reduce it to a problem

that is amenable to familiar methods. In the next paragraphs we summarize the main steps

that we take to achieve this, and explain how the reduced problem is solved. Readers who

prefer to skip the detailed theoretical analysis, can go directly to Section 5.

In Section 4.1 we reformulate the designer�s maximization problem. While mechanisms for

selecting multidimensional objects are in principle di¢ cult to solve, we show how to transform

our problem into a tractable one. The key step is to show that the auxiliary design problem

can be reformulated to look �almost� like a second-best public good provision problem. In

this problem, for any type pro�le, the designer chooses the probability of departing from the

status quo (which is the analog of the quantity of the public good), the division of costs, and a

new variable, which is the posterior probability that departing from the status quo is the right

decision (which does not have an analog in the standard public good provision problem).

In Section 4.2 we introduce a property we call �supermajority persuasiveness�(SP), which

captures the requirement that any acquired signal must be instrumental for decision-making:

it must have at least one realized posterior for which the collective action is di¤erent than

if no signal was acquired. We then show that the optimal auxiliary mechanism necessarily

satis�es this property. Consequently, supermajority persuasiveness leads to a distortion of the

acquired signal relative to the socially optimal one: there are type pro�les for which the optimal

auxiliary mechanism chooses a signal that is di¤erent from the signal that would be chosen by

a central planner, and this would be so even if the type pro�le were commonly known. This

occurs when the central planner�s signal is such that none of its realizations can persuade a

supermajority of players to vote against the status quo. We then write the auxiliary design

problem as a problem of maximizing a Lagrangian, show that it has a solution, and characterize

it (Proposition 2). We show how our solution also applies to two variants of our model: one

where types are commonly known (but there is no central planner) and one where players can

also bargain over the collective decision (i.e., the voting assumption is relaxed). Finally, we

illustrate the solution using the cost speci�cation of mutual information (see Corollary 1).

In Section 4.3 we show that the solution to the optimal auxiliary design problem coincides

with the solution to the actual design problem where players vote for the collective action

independently of their reports to the mechanism (Proposition 3). This follows from the obser-

vation that truth-telling is a dominant strategy equilibrium in the optimal auxiliary mechanism

(Corollary 2).
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4.1 Reformulating the design problem

Fix a player i and suppose that all other players �i report truthfully ��i 2 �n�1. If player i�s
report is such that rH(�̂) � 1� �̂(n�m+1), where �̂ = (�̂i; ��i), then player i�s net utility is given
by q(�̂) � (�i � (1 � rH(�̂))) � ti(�̂). If player i�s report is such that rH(�̂) < 1 � �̂(n�m+1) then
no signal is acquired and player i�s net utility is �ti(�̂). Thus, we can rewrite the net utility
of type �i of player i who reports �̂i when all other players report truthfully (Equation (9)) as

follows:

U(�i; �̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q
�
�̂i; ��i

�
�
h
�i �

�
1� rH

�
�̂i; ��i

��i
dF n�1 (��i)

�
Z
��i

ti(�̂i; ��i)dF
n�1 (��i) .

To express U(�i; �̂i) more compactly, we introduce the following notation. Given a report

�̂i, denote by Q(�̂i) the expected probability that the auxiliary mechanism chooses the action

a = 1. Denote by M(�̂i) the expected probability that the auxiliary mechanism chooses a = 1

but the state is ! = 0 (this is the probability that the auxiliary mechanism deviates from the

default action when it shouldn�t). Denote by Ti(�̂i) the expected payment of player i. Formally

Q(�̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q(�̂i; ��i)dF
n�1 (��i)

M(�̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q(�̂i; ��i) �
�
1� rH(�̂i; ��i)

�
dF n�1 (��i)

Ti(�̂i) =

Z
��i

ti(�̂i; ��i)dF
n�1 (��i)

The expected net utility of player i with type �i who reports �̂i is then given by:

U
�
�i; �̂i

�
= Q(�̂i) � �i �M(�̂i)� Ti(�̂i) (10)

Note that our speci�cation of the players�utility has the convenient feature that it is as if a

player gets a payo¤ of �i every time the collective action 1 is chosen, but he pays a penalty

(M(�̂i)) that is equal to the probability that this is the wrong collective action.

The designer�s objective function (OBJ) can therefore be written as

nX
i=1

Z 1�p

0

[Q (�i) � �i �M (�i)� Ti (�i)] dF (�i) (11)
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while incentive compatibility (i.e., Equation (IC)) requires

Q(�i) � �i �M(�i)� Ti(�i) � Q(�̂i) � �i �M(�̂i)� Ti(�̂i)

for all �̂i and �i and every player i. Note that U (�i) is the upper envelope of a family of a¢ ne

functions in �i, and is therefore convex. It follows that an auxiliary mechanism satis�es incentive

compatibility if and only if Q(�i) is nondecreasing and U (�i) =
R �i
0
Q (x) dx �M(0) � Ti(0)

(see, e.g., Krishna, 2010, p. 64).

The above argument allows us to express the auxiliary mechanism design problem in the

following compact form:

Lemma 2 The auxiliary design problem consists of �nding q(�) and rH (�) that maximize the

aggregate surplus,

nX
i=1

Z 1�p

0

[�i �Q(�i)�M(�i)] dF (�i)�
Z
�

c(q(�); rH(�))dF
n(�), (12)

subject to the following constraints: (i) Q(�i) is monotone and (ii) the aggregate virtual surplus

is nonnegative,

nX
i=1

Z 1�p

0

[v(�i) �Q(�i)�M(�i)] dF (�i)�
Z
�

c(q(�); rH(�))dF
n(�) � 0. (13)

This inequality is both necessary and su¢ cient for individual rationality and ex-ante budget

balancedness.

The monotonicity of Q(�i) is necessary for incentive compatibility, while the nonnegativity of

the aggregate virtual surplus follows from the IR constraint after we impose budget balancedness

and employ transfers that induce incentive compatibility. For further details, see the proof in

the appendix.

We refer to an auxiliary mechanism that employs the functions q(�) and rH (�), which solve

the design problem described in the lemma, as an optimal auxiliary mechanism:

We have therefore transformed the design problem of acquiring the (ex-ante) welfare-maximizing

signal and covering its cost into a problem of choosing a welfare-maximizing public good and

covering its cost, but with the following �twists�. First, the public good is multidimensional:

it is a distribution over posterior beliefs that can be summarized by a pair of numbers, the

high posterior rH , and the probability q of realizing it. Second, unlike in a conventional public

good provision problem, the characteristics of the public good a¤ect the players�actions in a
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game that is played after the good is provided. Third, also unlike in a conventional public good

provision problem, the players do not necessarily agree on the ranking of (noisy) signals, even

when the cost is ignored. This follows from the players�possible disagreement on the optimal

collective action for each realized posterior belief. Finally, in a conventional public good pro-

vision problem, the cost of the optimal level of the public good increases in types. This is not

necessarily true in our setup: even when the types are known, the cost of the optimal signal is

not necessarily monotone in the types.

4.2 Characterizing an optimal auxiliary mechanism

Assigning a type pro�le � to an informative signal that will not result in a supermajority vote

for a = 1 no matter what posterior is realized is wasteful: the players incur a cost, but do

not change their behavior relative to having no signal. We therefore introduce the following

property:

De�nition 1 (supermajority persuasiveness, SP) Given m, a signal (q; rH) is superma-
jority persuasive (SP) for the type pro�le � if q 2 (0; p=rH ] and rH � 1� �(n�m+1): An auxiliary
mechanism is SP if almost every informative signal that it acquires is SP.

We then have that

Lemma 3 Every optimal auxiliary mechanism is SP.

While it may seem intuitive that an optimal mechanism should be SP, note that, in principle,

a mechanism can achieve ex-ante optimality by committing to suboptimal interim actions (as

in Myerson and Satterthwaite, 1983). This is because suboptimal actions can lower the players�

incentives to misreport their types, and hence lower the information rents required to support

truth-telling. However, in our model, information rents depend solely on the distribution over

outcomes and not on the (cost of the) acquired signal. Thus, not buying a signal induces the

same distribution over outcomes as buying a noninstrumental signal. It follows that buying a

noninstrumental signal wastes resources but is not helpful in decreasing information rents.

By Lemma 3, an optimal auxiliary mechanism solves the constrained optimization problem

de�ned in Lemma 2 subject to an additional constraint that the mechanism is SP. If for a

particular type pro�le � the acquired signal satis�es that rH (�) = 1� �(n�m+1) (i.e., the �mar-
ginal�decisive voter is indi¤erent between the two collective actions), we say that the signal

is minimally supermajority persuasive (MSP) for that pro�le, or that at the pro�le �, the SP

constraint is binding.
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Since in an optimal auxiliary mechanism q (�) = 0 whenever rH (�) < 1� �(n�m+1), we can
simplify the expressions of Q(�i) and M(�i) as follows:

Q(�i) =

Z
��i

q(�i; ��i)dF
n�1 (��i) (14)

M(�i) =

Z
��i

(1� rH(�i; ��i)) � q(�i; ��i)dF n�1 (��i) (15)

To solve the design problem given in Lemma 2, we start by ignoring the monotonicity

constraint on Q (�), and later verify that the solution to this relaxed problem actually satis�es

this ignored constraint.

Finding the two functions q (�) and rH (�) that maximize the social surplus (12) is, formally,
a problem of �nding the maximum of a mapping from the domain of (pairs of) integrable

functions to the reals. In addition, the problem includes a constraint that the aggregate surplus

be nonnegative (13). Since this constraint takes the form of an integral, the problem can be

solved as an isoperimetric one, using techniques from the calculus of variations (see, e.g., Kamien

and Schwartz, 2012, part I, section 7, p.48). Speci�cally, it is possible to append the constraint

to the objective with a Lagrange multiplier, and derive the necessary conditions for the optimum

by maximizing the augmented integral (just as in a �standard�calculus optimization problem).

By the Lagrange su¢ ciency theorem, these conditions are also su¢ cient, provided that a feasible

solution exists (for details see the proof of Proposition 2).

The Lagrangian associated with maximizing Equation (12) under the constraint in Equation

(13) is given by16

L =
Z
�

�
w (�; �) � q(�; �)� (1� rH(�; �)) � q(�; �)�

1

n
� c(q(�; �); rH(�; �))

�
dF n(�) (16)

where

w(�; �) =
1

n

nX
i=1

�
1

1 + �
�i +

�

1 + �
v(�i)

�
. (17)

Our assumption that the distribution F is regular ensures that for all �, the function w (�; �)

is increasing in each component of �.

Notice that the Lagrangian in Equation (16) is independent of the derivatives of q (�) and
rH (�). Thus, the Euler equation that solves the problem of maximizing (16) is not a di¤eren-

tial equation, and therefore the between-type-pro�les aspects of the optimization problem are

16To obtain the Lagrangian L (�), write the aggregate surplus given by Equation (12) plus � times the
aggregate virtual surplus given by Equation (13). Now plug in the expressions for Q(�i) and M(�i) given by
Equations (14) and (15) and divide by (1 + �) � n.
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degenerate.17 Thus, the problem can be solved pointwise, i.e. by maximizing the integrand at

each � (see also Kamien and Schwartz, 2012, part I, section 5, p. 34).

Fix a pro�le of types � and a multiplier �. The part of the Lagrangian (16) that is a¤ected

by q(�; �) and rH(�; �) is

L̂ (q; rH ; w) = q(rH � (1� w))�
1

n
� c(q; rH) (18)

where rH ; w and q are used for brevity instead of rH (�; �) ; w(�; �), and q (�; �). Note that �

and � a¤ect the values of the maximizers q and rH only through w. Di¤erentiating L̂ (q; rH ; w)
with respect to q and rH and equating to zero yields

L̂1 (q; rH ; w) = rH � (1� w)�
1

n
� c1 (q; rH) = 0, (FOCq)

L̂2 (q; rH ; w) = q �
1

n
� c2 (q; rH) = 0, (FOCr)

where c1(q; rH) is the derivative of the function c(q; rH) with respect to its �rst argument q,

and c2(q; rH) is the derivative of c(q; rH) with respect to its second argument rH .

Given � and �, denote by (~q(�; �); ~rH(�; �)) the signal that solves (FOCq) and (FOCr),

if such a signal exists. We say that (~q(�; �); ~rH(�; �)) is interior if ~q(�; �) 2 (0; p=rH) and

~rH(�; �) 2 (p; 1). Recall that (~q(�; �); ~rH(�; �)) is SP if ~rH(�; �) � 1 � �(n�m+1) and ~q(�; �) 2
(0; p=rH).

We provide a characterization of optimal mechanisms for a class of cost functions c (q; rH)

that satisfy the following properties:18

P1 The cost and marginal costs are all increasing in both q and rH . The marginal cost of rH
is convex in q.

P2 The marginal cost of achieving certainty in either ! = 0 or ! = 1 is at least n.

P3 For any w there is at most one solution to (FOCq) and (FOCr).

17In the language of the calculus of variations, the problem is not a dynamic one.
18Formally, we require the following properties: (P1) c1 > 0; c2 > 0; c11 > 0; c22 > 0; c12 > 0; c211 > 0,

(P2) c1
�
p
rH
; rH

�
> n for any rH > p, and c2 (q; 1) > n for any q 2 (0; 1), and (P3) as stated in the text.

A su¢ cient condition for (P3) to hold is that c11c22 � (1� c12)2 > 0 whenever q = c2 (q; rH), which is the
(FOCq) condition. Alternatively, this condition holds if the right-hand side of Equation (18)) is quasiconcave.

If c
�
fqj ; rjgJj=1

�
=
P

j qjh (rj) for some h : [0; 1]! R+, then (P3) is satis�ed when h is increasing and convex.
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It is easy to verify that these properties are satis�ed by the cost function that is proportional

to the mutual information between the signal and the state (given by Equation (2)) or to the

expected variance of the induced posterior beliefs.

Proposition 2 Assume that the cost function c satis�es (P1)-(P3). Then there exists �� � 0
for which an optimal auxiliary mechanism q� (�) ; r�H (�) is characterized as follows:

� If (~q (�; ��) ; ~rH (�; ��)) is not interior, then no information is acquired for the pro�le �.

� If (~q (�; ��) ; ~rH (�; ��)) is interior and SP, then q� (�) = ~q (�; ��) and r�H (�) = ~r (�; ��).

� If (~q (�; ��) ; ~rH (�; ��)) is interior but is not SP then r�H (�) = 1 � �(n�m+1) and q� (�)
is determined according to (FOCq), provided that the solution is interior. Otherwise, no

signal is acquired.

Finally, r�H (�) is decreasing in each player�s type, and q
� (�) is increasing in each player�s type.

The proposition addresses the following special cases.

The case of commonly known types and/or no participation constraints. The optimal
auxiliary mechanism when types are commonly known is obtained by setting �� = 0. To

see this, note that when � = 0 the problem of maximizing the Lagrangian in Equation (16)

reduces to maximizing the aggregate surplus as given in (12) subject only to the SP constraint.

Under complete information, a signal is purchased only when it creates a positive social surplus

and, therefore, the cost of the signal can always be covered, and the excess surplus can be

redistributed to satisfy all the players�participation constraints.

The solution that is obtained when �� = 0 is optimal also if types are private and players are

obligated to participate in the bargaining. The reason is that under incomplete information,

it follows from standard arguments (see, e.g., Borgers, 2015) that if there are no participation

constraints, there exists a payment schedule that induces truth-telling and allows the group to

implement the socially optimal outcome of the complete information case.19

The case of a contractible collective action. The case in which the mechanism can choose
the signal and the action with no voting is equivalent to the case in which a single vote for

a = 1 is enough to make that decision (i.e., m = 1). To see this, notice that by (FOCq), if

an interior signal is purchased, then it is always the case that at least one player prefers the

19Speci�cally, T (�i) = T (0)+Q(�i) � �i+M(0)�M(�i)�
R �i
0
Q (x) dx, where Q and M are given by (14) and

(15), respectively, where q (�) and rH (�) are characterized by Proposition 2 when �� = 0, and T (0) is chosen to
satisfy budget balancedness (since we don�t need to worry about participation constraints).
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action a = 1 when the high posterior rH is realized.20 Under m = 1, this means that every

interior solution is supermajority persuasive and therefore the SP constraint is never binding

at the optimum. Thus, when m = 1 the SP constraint can be ignored. It is easy to verify that

solving the problem without the SP constraint is e¤ectively the same as solving the problem

when actions are contractible (in this case, too, any optimal signal is always instrumental, but

the mechanism can choose the action a = 1 after a realization of the posterior rH , regardless of

its value.)

An immediate corollary of Proposition 2 is that when the cost function is proportional to

the mutual information between the signal and the state, an optimal auxiliary mechanism can

be characterized as follows.21

Corollary 1 Suppose that the cost function is de�ned by Equation (2). Let �� be the constant
de�ned in Proposition 2. Then, in the corresponding optimal auxiliary mechanism, we have22

r�H (�) = max

�
e
n
� � en�w(�;��)

e
n
� � 1

; 1� �(n�m+1)
�
. (19)

Next, r�L (�) is determined such that DKL(r
�
H (�) ; r

�
L (�)) =

n
�
[r�H (�)� (1� w (�; ��))] provided

that a solution exists and is in (0; p); otherwise, r�L (�) = p. If r
�
H (�) > 1� �(n�m+1) then r�L (�)

is given by

r�L (�; �
�) = min

�
e
n
�
(1�w(�;��)) � 1
e
n
� � 1

; p

�
. (20)

Finally,

q� (�) =
p� r�L (�)

r�H (�)� r�L (�)
. (21)

20To see this formally, note that when m = 1, then if (~q (�; ��) ; ~rH (�; ��)) is interior, it follows from (FOCq)
that ~rH (�; ��) > 1�w (�; ��). However, because w (�; ��) � w (�; 0) � �(n) it follows that ~rH (�; ��) > 1� �(n),
implying that SP is never violated when a signal that is socially optimal is acquired.
21As in the central-planner benchmark, it is still true that as � ! 0; the optimal signal to acquire for each

type pro�le converges to the fully informative signal. However, since the value of the Lagrange multiplier ��

changes with �; it remains an open question whether the acquired signal for a type pro�le necessarily becomes
more Blackwell informative as � decreases.
22We do not restrict rH(�) to be at most one if no signal is acquired (i.e., if q(�) = 0). Indeed, r�H(�) > 1

whenever w(�; �) < 0: But in this case, r�L(�) = p, and hence q(�) = 0. Also notice that since �i � 1 � p, it
follows that 1� �(n�m+1) � p:
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Proposition 2 established that q�(�) is increasing in each of its components. An immediate

corollary of this is the following (Mookherjee and Reichelstein, 1992):23

Corollary 2 There exists an optimal auxiliary mechanism that solves the problem stated in

Lemma 2 in which truth-telling is a dominant strategy equilibrium.

4.3 From the auxiliary mechanism to the actual mechanism

Up to now we have analyzed an auxiliary mechanism, that operates as if the players commit

to vote on the collective action according to their reported types. In such a mechanism, when

a player considers misreporting, he takes into account that in the subsequent voting game his

vote will not be cast according to his true preferences but rather according to his reported

ones. For instance, if player i of type �i reports that his type is �0i > �i, and a posterior rH
between 1 � �0i and 1 � �i is realized, then the mechanism votes for a = 1 on behalf of the

player even though the player actually prefers the action a = 0 according to the information he

possesses and his true type. This fact may discourage players from misreporting their types in

the auxiliary mechanism. By contrast, in an actual mechanism a player is free to vote according

to his true preferences. In that case, a player may have an incentive to a¤ect the choice of the

signal, knowing that he can vote in favor of his truly preferred action in the ensuing voting

game.

Consider now an actual mechanism that employs the functions q� (�) and r�H (�) that were
characterized in Proposition 2. Does the mechanism remain incentive compatible, budget bal-

anced, and individually rational even though the players vote on the collective action according

to their true preferences? Our next result shows that this is indeed the case.

Proposition 3 The solution to the actual mechanism design problem coincides with the solu-

tion to the auxiliary mechanism design problem.

The proof hinges on the fact that there exists an optimal auxiliary mechanism, characterized

by Proposition 2, that is SP and for which truth-telling is a dominant strategy. We show that

if a player wants to misreport in the actual mechanism, but not in the auxiliary mechanism,

it must be the case that after rH is realized the player �nds it bene�cial to vote for the status

quo (a = 0), whereas the auxiliary mechanism would have voted on his behalf for taking the

action (a = 1). However, it can be shown that in this case the player can pro�tably deviate in

the auxiliary mechanism by reporting that he is of the lowest type.

23The equivalence between Bayesian and dominant incentive compatibility that we use here is de�ned in terms
of the ex-post allocation. Mookherjee and Reichelstein (1992) show that this equivalence fails unless the ex-post
allocation rule (which corresponds to q in our environment) is monotone in each of its coordinates. Gershkov
et al. (2013) use a more permissive notion of equivalence, which considers the interim expected utilities of the
players. They then show that this form of equivalence between Bayesian and dominant incentive compatible
mechanisms holds whenever players have linear utilities and independent, one-dimensional, private types.
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5 Properties of the optimal signal structure

Proposition 2 in Section 4.2 characterizes the optimal signal acquired by the group. This

characterization allows us to describe features of the optimal signal structure, and also to

explain the e¤ect of incomplete information and a supermajority requirement on the voting

stage.

The mapping from types to signals. The characterization in Proposition 2 highlights

three types of outcomes of the bargaining over information: acquiring no signal, acquiring an

�interior�signal, and acquiring an MSP signal. As de�ned in Section 4, an interior signal solves

the �rst-order conditions of the design problem (given by Equations (FOCq) and (FOCr) in

Section 4.2). That is, this signal equates the marginal social bene�t from increasing q and rH
with their marginal costs. A signal is MSP (minimally supermajority persuasive) for the type

pro�le � if the high posterior rH just ensures a supermajority support for a = 1. That is, rH is

equal to 1� �(n�m+1). Note that such a signal does not necessarily equate the marginal bene�t
with the marginal cost.

These outcomes are summarized in the following proposition. To simplify the statement of

the proposition, we slightly strengthen the assumptions on the cost function, and require that

the marginal cost with respect to rH be in�nite when rH = 1 and q > 0; and that the marginal

cost with respect to q be �nite when q = 0 and rH = 1.24

Proposition 4 Suppose that the cost function is c (q; r) = � � ĉ (q; r) for some �xed function
ĉ (�; �), and that it satis�es (P1)-(P3) for all �. Suppose further that c2 (q; 1) is in�nite for every
q > 0 and that c1 (0; 1) is �nite. Then, for any type distribution F and for any m > 1, there

exists �� such that for all � < ��, an optimal mechanism partitions the set of all type pro�les

into three subsets:

i. No signal: a positive measure subset of type pro�les for which no signal is acquired,

ii. Interior signal: a positive measure subset of type pro�les for which the signal is given by

the solutions to Equations (FOCq) and (FOCr),

iii. MSP signal: a positive measure subset of type pro�les for which an MSP signal is acquired.

If � > ��, subset (i) is of positive measure, while subsets (ii) and (iii) may be empty.

24These stronger assumptions guarantee that the set of type pro�les for which MSP signals are acquired has
a non-zero measure � signals with rH = 1 are not too costly, nor too cheap, to acquire. These conditions
are satis�ed by our leading cost speci�cation given by Equation (2), in which case c1 (0; 1) = �� ln (p) and
c2 (q; 1) =1 for all q > 0.
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To illustrate the projection of the above three cases onto the players�type space, suppose

that there are two players who need a unanimous vote in order to depart from the status quo

and choose a = 1 (i.e., m = n = 2). Proposition 4 highlights the following features of an

optimal signal, which are also depicted in Figure (2b) below. When the sum of the players�

types is small, no signal is purchased. Indeed, if the aggregate social harm from incorrectly

keeping the status quo is small, purchasing a costly signal is ine¢ cient. Conversely, when the

sum of types is large, it is optimal to purchase a signal. Intuitively, this is because the social

harm of incorrectly keeping the status quo is large and because convincing the players that

the action a = 1 is optimal is relatively easy. When one type is high and the other is low, a

signal is purchased but its characteristics must be distorted in order to just pass the unanimity

requirement. This is because the high posterior rH must be su¢ ciently large so as to convince

the low type to agree to vote for a = 1 upon the realization of rH .

The e¤ect of asymmetric information. To understand the distortions that are due to the
fact that players�types are privately known, it is instructive to compare the characterization of

optimal signals in Proposition 2 in the two cases of complete and incomplete information. Let

(qc (�) ; rcH (�) ; r
c
L (�)) denote the mapping from commonly known type pro�les to signals that

maximizes the total ex-ante social surplus (OBJ) such that the acquired signal is SP. We refer

to this as the optimal acquisition rule under complete information. Recall that this acquisition

rule is obtained by letting �� = 0. Since w(�; �) (as de�ned in Equation (17)) is increasing in

each �i, decreasing in �, and w((1� p; :::; 1� p); �) = 1� p for any �, it follows that

w (�; ��) < w (�; 0) � w ((1� p; :::; 1� p); 0) = 1� p

Since w(�; ��) is continuous in each �i, there exists �0 > � (i.e., �0i � �i for all i, with at least
one strict inequality) such that w (�0; ��) = w (�; 0). This has the following implications.

Observation 1. If � is such that under both complete and incomplete information a signal is
acquired and the SP constraint is slack, then qc (�) > q� (�) and rcH (�) < r

�
H (�).

Since q(�) is the probability of taking the non-default action, this observation means that

under incomplete information this action will be taken with a lower probability. However,

since rcH(�) < r
�
H(�), it follows that whenever the non-default action is taken under incomplete

information, it is taken with greater con�dence.

An intuition for the above observation stems from how a signal is distorted to incentivize

players to reveal their type. From the literature on trade with asymmetric information, we

know that to incentivize agents to reveal their types, the probability of trade must be distorted

downward. Since a signal is a multidimensional object, a priori it is not clear how information
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will be distorted to incentivize truth-telling. Our characterization shows that the distortion

occurs by lowering the probability that a = 1 will be taken, i.e., by lowering q:

However, in contrast to a standard mechanism design problem of allocating an asset, since

the mechanism in our environment (or the bargaining) decides on a signal, it can �compensate�

for the distortion in the probability of taking a = 1 (i.e., q) by changing the likelihood that this

is the correct action whenever it is taken (i.e., by changing rH). In the family of cost functions

that we focus on, both the marginal cost and the marginal bene�t of rH decrease when q is

distorted downward relative to the unconstrained socially optimal value. However, since the

marginal cost of rH is convex in q (see (P1) above), whereas the marginal bene�t is linear in q;

in order to satisfy the �rst-order condition (FOCr), rH must increase (relative to the complete

information case).

A related intuition concerns the ability of low types to veto information acquisition. Low-

ering the probability that the signal will be acquired, and raising the con�dence that a = 1 is

the right action (conditional on acquisition), makes the low types more inclined to participate

in the bargaining over information.

Observation 2. If qc(�) = 0 then q�(�) = 0; but the converse is not true.

Put di¤erently, there are realizations of � for which information is acquired under complete

information but not under incomplete information. Hence, the fact that players do not observe

each other�s type can lead to under-provision of information for the collective decision, which

implies greater �conservatism�in the sense of being less likely to depart from the status quo.

This again follows from the downward distortion in q that is necessary to induce players to

reveal their type. Consequently, for some type pro�les � for which qc(�) is relatively low, this

probability will decrease to zero when types are private.

Observation 3. A type pro�le is assigned an MSP signal under incomplete information, only
if it is assigned one under complete information.

The fact that players vote after they observe the realization of the acquired signal introduces

an ex-ante distortion even when players�types are commonly known. This occurs when the

signal (q; rH) that maximizes ex-ante welfare satis�es q > 0 and p < rH < 1 � �(n�m+1).
In this case, the acquired signal will be distorted such that rH will increase to 1 � �(n�m+1).
Observation 3 establishes that introducing private types does not exacerbate this distortion.

There are two reasons for this. First, some type pro�les that are assigned a signal that just

satis�es the SP constraint when the pro�le is commonly known may be assigned no signal when

types are privately known. This follows from the downward distortion in q (relative to the

unconstrained socially optimal signal), which arises under incomplete information in order to

induce truth-telling. Since the SP constraint typically has bite when some players have low

types, it means that for these pro�les, qc is relatively low (since it increases in each player�s
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Figure 2: Optimal signals for two players. (a) The case of complete information and m =
1. (b) Complete information and m = 2. (c) Privately known types, uniformly distributed
over [0,0.25] and m = 2. For type pro�les in grey regions, no signal is acquired; in blue
regions, a socially optimal signal is acquired; in hatched regions, the signal is distorted to
be minimally supermajority-persuasive; in the red region, the signal is distorted due to the
asymmetric information.

type). Hence, for su¢ ciently low qc, the downward distortion introduced by private types

may drive this probability all the way down to zero. The second reason is a consequence of

Observation 1: for each type pro�le r�H > rcH and, therefore, for some pro�les where the SP

constraint is binding under complete information, the increase in rH slackens the constraint

under incomplete information.

We illustrate the above di¤erences between the complete and incomplete information envi-

ronments for the case of two players who need to agree unanimously on a = 1 (i.e., n = m = 2),

whose types are independently drawn from a uniform distribution on [0; 0:25], and whose prior

probability p is 0:75. The cost function is assumed to be proportional to the mutual informa-

tion between the state and the signal, as de�ned in Equation (2), with � = 0:55. We use this

example also to illustrate the e¤ect of allowing players to commit to whatever collective action

they choose for each signal realization, which, as explained above, is obtained by setting m = 1:

Figure (2a) illustrates the complete information case with m = 1. There are two regions

in this �gure. The grey region represents the type pro�les for which no signal is acquired,

while the blue region represents the types pro�les for which the socially optimal signal is pur-

chased. Notice that since m = 1, supermajority persuasiveness has no bite. It follows that the

case represented by this �gure exhibits no distortions relative to the (unconstrained) socially

optimum.

Figure (2b) illustrates the complete information case with m = 2. Here, a third region

emerges: the hatched area represents the type pro�les for which the (unconstrained) socially

optimal signal is not supermajority persuasive, but acquiring an MSP signal is better than no
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information at all. Notice that this occurs for pro�les in which the average type is above some

threshold but the minimal type is small.

Finally, Figure (2c) corresponds to the case of asymmetric information with m = 2. This

�gure depicts the observations described above: the region in which no signal is acquired under

asymmetric information contains the corresponding region under complete information. The

regions with MSP signals under asymmetric information are contained in the corresponding

regions under complete information. The red region represents type pro�les for which the signal

is distorted due to asymmetric information; i.e., relative to the case of complete information, q

is lower and rH is higher.

The diagnostic odds ratio of the acquired signal. In our environment, a signal is essen-
tially a classi�cation test: either a reform is needed (! = 1) or not (! = 0). As in any imperfect

classi�cation test, there are false positives (choosing the reform when it should not be chosen),

and there are false negatives (sticking with the status quo when a reform is required). How

should one evaluate the �quality�of the signal as a diagnostic tool for checking when the group

should adopt the reform? The literature on clinical testing (see, e.g., Glas et al., 2003) has pro-

posed the Diagnostic Odds Ratio (DOR) as a possible one-dimensional indicator of diagnostic

performance that takes into account both forms of false results. More speci�cally, the DOR

measures the ratio between the odds of positive results when a reform should be chosen (rH=rL)

and the odds of positive results when a reform should not be chosen ((1� rH)=(1� rL)).
Should the quality of a test depend on the particular stochastic realization of the types? In

our leading speci�cation, where the cost is measured as the mutual information between the

state and signal, as de�ned in Equation (2), Corollary 1 implies that for interior solutions the

signal�s quality (as measured by DOR) is independent of the type pro�le and is equal to en=�.

Thus, the more members, the better the quality. And, the greater the cost scaler �, the lower

the quality.

The e¤ect of the supermajority rule. In our model, players do not have private information
on the state ! (see also Section 6.3). Thus, voting on the collective action does not serve as

a means of aggregating information (notice the di¤erence from settings in which the players

are privately informed about the state, in which case more votes typically contribute to the

probability that the right decision is taken). Consequently, a higher supermajority requirement

only toughens the supermajority-persuasiveness constraint. In particular, as explained above,

when m = 1; this constraint is never binding. This makes it more di¢ cult for the group to

purchase a persuasive signal. Hence, in some cases the group foregoes opportunities to depart

from the status quo, which could have raised its welfare. This implies the following:

Observation 4. The socially optimal gain from information is nonincreasing in the superma-

jority requirement m.
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Figure 3: E¤ects of the cost scaler � and the supermajority requirement m

This observation is illustrated for the case of commonly known types in panel (a) of Figure

3. The �gure assumes n = 16 players whose types are uniformly distributed over [0; 0:3], a prior

probability p = 0:7 that the state is ! = 1, and a cost function given by Equation (2) with

� = 8. Panel (b) depicts the ex-ante probability of acquiring information (i.e., the probability

mass of type pro�les for which qc (�) > 0) as a function of m for di¤erent values of � . As

is evident from the �gure, for larger m and for larger �; the ex-ante probability of acquiring

information decreases.

While the monotonicity exhibited in panel (a) remains even if types are not commonly

known, the monotonicity in panel (b) is not guaranteed for intermediate values of m if types

are private information. This is because changes in the required supermajoritym may a¤ect the

probability of acquiring information through the value of �� in subtler ways. It is noteworthy,

however, that at the extreme, if unanimity is required (m = n) and n is su¢ ciently large, then

for almost all type pro�les the minimally supermajority-persuasive signal requires rH to be close

1. If the cost function is such that purchasing a signal that fully reveals ! = 1 (i.e., rH = 1)

is too costly, then no signal will be acquired for almost all type pro�les. In our leading cost

speci�cation (Equation (2)), this is true for � su¢ ciently large.

Finally, the supermajority requirement a¤ects the likelihood that deviating from the status

quo is the right decision, conditional on making that decision. By Proposition 2, when types

are commonly known (i.e., �� = 0), a tougher SP constraint immediately implies that either

information is acquired with a weakly higher rH ; or information is not acquired if the higher rH
that the SP constraint requires is too costly. When types are not commonly known, the e¤ect

is again more subtle and depends on the distribution of types because a change in m can also

a¤ect the value of ��:
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6 Discussion

In this section we discuss some key features of our model.

6.1 Key features of the preference speci�cation

We start by examining which features of our preference speci�cation are necessary for tractabil-

ity, and which play a key role in the analysis of optimal mechanisms. Virtually all works on

voting that involve costs or transfers assume binary actions and states, unidimensional types,

and quasilinear preferences (see, e.g., Dal Bó, 2007; Dekel, Jackson, andWolinksy, 2008; Casella,

Llorente-Saguer, and Palfrey, 2012; Drexl and Kleiner, 2018). In particular, unidimensional-

ity is important for our mechanism design approach to the bargaining over information since

mechanism-design with multidimensional types is notoriously di¢ cult. Since there are four dif-

ferent utility numbers (corresponding to all possible combinations of the action and the state),

some normalization is needed to reduce the types to a single dimension.

Our normalization involves two assumptions: (i) the payo¤ from matching the state is inde-

pendent of the state (and higher than the payo¤ from a mismatch) and (ii) the payo¤s from a

mismatch sum up to a constant. It is the second assumption that allows us to apply Myersonian

techniques to characterize the socially optimal (budget balanced and individually rational) bar-

gaining outcomes. To see this, denote a player�s payo¤ from (a = 1; ! = 0) by x; and the payo¤

from (a = 0; ! = 1) by y: As we showed in Section 4.1, a player�s gain from participating in

the bargaining, relative to having no information, is equal to q[x � 1 + (2 � x � y)rH ]; where
q is the probability of choosing a = 1: If x + y is a constant, then x can represent a player�s

type, and we obtain that in the expression for the player�s gain, the type multiplies only q: This

implies that the mapping from types to signals and cost shares is incentive compatible only if

the interim expected value of q is monotone in the player�s type.

Our analysis can also be carried out with alternative normalizations that yield a unidimen-

sional type space. For example, suppose that all players get a payo¤ of 1 when the action

matches the state, and all players get a payo¤ of zero when a = 1 but ! = 0. De�ne a player�s

type t to be his payo¤ when a = 0 but ! = 1, where t 2 (�1; 1): Then type t�s gain from the

bargaining, relative to having no information, is equal to q[�1+(2� t)rH ]: By making a change
of variables such that x := q � rH and y := q (and letting z := (p�x)=(1� q) in order to capture
rL), the expression for type t�s gain becomes �tx + 2x � y: Note that in this formulation, a
player�s type multiplies the variable x: Incentive compatibility would then require the interim

expected value of x to be monotone in a player�s type. It can be shown that under our leading

cost speci�cation (2), at an optimal solution, rL is decreasing in each player�s type, while q is

increasing, and since rL = (p � q � rH)=(1 � q); it follows that x is monotone in types. Hence,
we can also apply the Myersonian techniques to this payo¤ speci�cation.
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6.2 The participation constraint

Recall that in our model, a player who opts out of bargaining e¤ectively vetoes the provision of

a public signal. We make this assumption for two reasons. First, this veto-power assumption

is typical in almost all public good settings (e.g., Mailath and Postlewaite, 1990; Hellwig,

2003). Second, from a more technical point of view, this assumption implies that the value of

the outside option for each player does not depend on the types and actions of other players

(notice, however, that the value does depend on the type of the player who opts out). While

obviously there are situations that do not �t this assumption, there are many others that do.

One can of course think of other assumptions about the players�outside options. However,

when considering such alternative assumptions, it is important to notice that in the novel

bargaining problem that we study, it is not obvious what a player should expect to get if

he does not participate in the bargaining over the signal. For example, if a quitter cannot

prevent the others from acquiring a signal, does he observe the realization? Does he vote on

the collective decision? Can he be excluded from the consequences of the ultimate collective

decision? While each of these alternatives may be a reasonable description of some �real-

world�scenario, none of them seem to be universally true. However, each of these alternatives

introduces new challenges to the analysis. For example, even if the quitter cannot prevent the

others from acquiring information and cannot participate in the voting (but he does enjoy the

consequences of the decision), then when considering whether to quit he needs to take into

account the equilibrium outcome of the game without him. This means that the participation

constraint is determined endogenously in equilibrium. Thus, our paper opens the door to many

interesting questions regarding the e¤ect of outside options in situations of bargaining over

public information.

An interesting feature of our framework is that by opting out, a player reveals information

about his type. Our veto-power assumption implies that this learning has no e¤ect because the

game essentially ends with the group choosing the status quo. Notice that even if we assume

that a player who quits the bargaining cannot prevent others from voting on the signal, the

information that is leaked about the quitter type still does not a¤ect the voting strategies. This

follows from the fact that each player has a weakly dominant strategy that depends solely on

his own type and on the public signal.25

25By contrast, there is a literature that looks at second-stage trading that follows a �rst-stage auction. In
these environments, the information learned about a player in the �rst stage �in particular, whether that player
opted out �a¤ects the strategic behavior in the second stage. See, for example, Zheng (2002), Haile (2003),
Hafalir and Krishna (2008), Zhang and Wang (2013), and Dworczak (2020).
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6.3 Public vs. private information

This paper focuses on the acquisition of public information by a group before it makes a collective

action. Clearly, there are situations where group members can also decide on costly acquisition

of private information. Extending the model by allowing players to collect private information

introduces some nontrivial challenges.

First, it is no longer the case that each player�s type has a weakly dominant strategy that

depends solely on the public signal. Second, determining the e¤ect of tightening the superma-

jority requirement is more di¢ cult: on the one hand, the supermajority rule a¤ects the players�

incentives to acquire private information (see, e.g., Persico, 2004); on the other hand, the su-

permajority rule serves to aggregate the private information collected by the players. Finally,

when the decision to acquire private information is made before the decision to acquire public

information, there is a more complicated learning process in which each player tries to infer the

other players�types. In particular, here the inference that each player makes about the other

group members can a¤ect his voting behavior because he may also update his beliefs about the

state. Hopefully our work will inspire future research to explore these questions.

7 Concluding remarks

This paper is concerned with the question of how groups who want to make informed collective

decisions bargain over which information to acquire. Instead of committing to a particular bar-

gaining protocol, we took a mechanism design approach that looks for the signal that maximizes

the players�expected sum of utilities, taking into account that (i) players must be willing to

participate in the mechanism, (ii) players must be willing to disclose their private willingness-

to-pay for information, and (iii) players vote on the outcome after they jointly observe the

realization of the acquired signal.

An optimal mechanism exhibits two types of distortions in information acquisition. First,

the fact that the group members vote on the basis of the signal realization implies that the signal

that maximizes the net expected surplus is not necessarily the signal that is acquired (even when

types are commonly known). This stems from the fact that it is wasteful to purchase a signal

that will not persuade a supermajority to vote against the default action. Second, the fact

that players need to be incentivized to disclose their types, as this determines what the optimal

signal is, further distorts the type of information that is acquired: the probability of departing

from the status quo decreases while the induced posterior belief that this is the right decision

increases (i.e., when the players vote for a = 1 they do so with higher con�dence). Thus,

our analysis suggests that groups who rely on collective public information to make collective

decisions are more conservative in departing from a status quo relative to the case of commonly
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known types (with or without a central planner).

In addition, our characterization of the optimal information structure has the potential to

inform future empirical studies on decision problems involving collective information acquisition.

First, our characterization suggests some testable implications. For instance, in the context of

our household example, an important collective decision that households make is on whether

or not to send a child to a nonstandard educational environment (e.g., a gifted-child program,

a special education school, a competitive sports team, etc.).26 Checking whether the new

environment �ts the child�s needs and abilities is costly in terms of time, e¤ort, and money.

While both parents obviously want to make the �right�decision, they sometimes di¤er in their

attitude toward a �wrong�one. For example, one parent may be worried that sending the child

to a stressful environment might harm her, whereas the other parent may be more concerned

about the possibility that the child will not ful�ll her potential. Since the parents�preferences

over information in this case di¤er, they have to agree �rst on what information to acquire (if

any) and how to share the burden of collecting it.27

Suppose that households decide optimally (as is often assumed in the empirical literature).

Suppose also that data can be collected on which type of information households acquire (e.g.,

which experts they consulted with, which preparatory courses they completed, which psycho-

logical or medical tests they took, etc.), what their subsequent decision was, what the preference

intensities of each spouse regarding the decision were and to what extent these preference in-

tensities were known to each spouse (perhaps using sophisticated questionnaires). One testable

implication is that couples with polarized preference intensities will not acquire information even

though according to their preference intensities it is sometimes socially optimal to do so (and

this is true even if preference intensities are commonly known). Another testable implication is

that spouses who are less informed about each other�s preferences have a greater tendency to

seek tests that lean toward the status quo. That is, they would perform tests with a higher false

positive rate (i.e., higher probability of falsely identifying a match) when the default action is

to apply to the nonstandard educational environment, and tests with a higher false negative

rate (i.e., with a higher probability of falsely identifying a mismatch) when the default action

is to not apply to the nonstandard educational environment.

Second, in the context of a speci�c application, our results allow one to measure how far

in terms of welfare the observed information choices and/or the collective actions are from the

theoretical optimum. For example, suppose data can be collected on decisions that require a

majority consent among managers in an organization, and on the information they choose to

26Of course, sometimes after the key yes/no decision is made, the household has to decide on the speci�c
program/school/team to apply to. Oftentimes, however, this decision is of lower importance, and involves less
polarization of the spouses�preferences.
27For example, while one spouse spends time taking the child to the doctor/psychologist/test, the other spouse

does other chores in return.
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collect prior to making the decisions. One can then measure the proportion of decisions that

lead to deviations from a status quo. If the proportion of such decisions di¤er signi�cantly from

the theoretical optimum implied by our model, this may suggest that the process of bargaining

over information in the organization is suboptimal. Of course, in order to do that one has to

adapt the abstract model to the speci�c application in mind.
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8 Appendix: Proofs

Proof of Lemma 1

Let � 2 [0; 1� p]n be the players�types. Consider a signal that induces a probability distribution
q over a set R 2 [0; 1]J of posterior beliefs (on state ! = 1) such that the expected posterior
equals p, i.e.,

P
r2R q (r) � r = p. Let �R (respectively, R) be the set of posterior beliefs above

(respectively, below) 1� �(n�m+1). Suppose that �R contains (at least) two distinct elements r0

and r00, where r0 < r00. Both r0 and r00 lead to the same collective action a = 1 in the voting

game.

Consider now a modi�ed signal that induces a distribution q̂ over a set of posterior beliefs

R̂. The set R̂ is identical to R, with one di¤erence: the posteriors r0 and r00 are replaced by the

posterior r̂ � q(r0)
q(r0)+q(r00)r

0+ q(r00)
q(r0)+q(r00)r

00. The distribution q̂ is de�ned such that q̂(r) = q(r) for all

r 2 Rnfr0; r00g, while q̂(r̂) = q(r0)+q(r00). Note that since r̂ 2 (r0; r00), r̂ is above 1��(n�m+1) and
so it induces the collective action a = 1, which is the same as the collective action induced by r0

and r00. Thus, the modi�ed signal q̂ (over R̂) induces the same distribution over outcomes as the

original signal q (over R). By construction, the modi�ed signal also satis�es
P

r2R̂ q̂ (r) � r = p.
Since the modi�ed signal is strictly less informative in the Blackwell sense, it is cheaper than

the original one. The proof for the case in which there are more than two elements in R is

analogous. �

Proof of Proposition 1

Fix n and �. The derivative of rH in the planner�s solution (as de�ned in Equation (5)) with

respect to � is given by:
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that dg=dz > 0 for all z > 1 and � < 1). Thus, rH is decreasing in �.

Similarly, the derivative of rL in the planner�s solution (as de�ned in Equation (5)) with
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This expression is positive, because
�
� +

�
1� �

�
e�

n
�

�
e
n
�(1��)�1 is positive for all for all � and

� < 1 (to see this, de�ne g as before, and notice that dg=dz < 0 for all z < 1 and � < 1). Thus,

rL is increasing in �.

Taken together, these observations imply that for all n and �, as � decreases, the value of

rH in the planner�s solution increases whereas rL decreases, making the signal purchased by the

planner more Blackwell informative. Finally, it is easy to verify that as � ! 0 the values of

rH and rL, as given by (5), converge to 1 and 0, respectively, while q converges to p. Thus, as

the cost scaler goes to zero, the socially optimal signal that the planner acquires for any type

pro�le converges to the fully informative one.�

Proof of Lemma 2

From U (�i) =
R �
0
Q (x) dx�M(0)� Ti(0) we obtain

Ti(�i) = Q(�i) � �i �M(�i)�
Z �

0

Q (x) dx+M(0) + Ti(0). (22)

Player i�s ex-ante expected net utility is given by
R 1�p
0

U(�i)dF (�i). Applying integration by

parts we obtainZ 1�p

0

U(�i)dF (�i) =

Z 1�p

0

Q(�i)[
1� F (�i)
f(�i)

]dF (�i)� Ti(0)�M(0)

Plugging in U (�i) = Q(�i) � �i �M(�i)� Ti(�i) and rearranging yields:Z 1�p

0

Ti(�i)dF (�i) = Ti(0) +M(0) +

Z 1�p

0

[v(�i) �Q(�i)�M(�i)] dF (�i) (23)

where v(�i) is the virtual valuation of type �i.

Substituting Equation (23) into Equation (11) yields that the designer�s problem is to max-

imize
nX
i=1

Z 1�p

0

�
1� F (�i)
f(�i)

Q(�i)

�
dF (�i)�

nX
i=1

Ti(0)�
nX
i=1

M(0) (24)

subject to the following ex-ante budget balancedness constraint (which is obtained by plugging

Equation (23) into Equation (BB)):Z
�

c(q(�); rH(�))dF
n(�) =

nX
i=1

Ti(0) +

nX
i=1

M(0) +

nX
i=1

Z 1�p

0

[v(�i)Q(�i)�M(�i)] dF (�i) (25)

where individual rationality requires �M(0) � Ti(0) � 0 for every player i, and therefore
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0 � �
Pn

i=1 [Ti(0) +M(0)]. Since the constants T1 (0) ; : : : ; Tn (0) enter the objective function

and the constraint only through the aggregate
Pn

i=1 Ti(0), we can assume that they are all

equal. We therefore denote T (0) = T1 (0) = : : : = Tn (0). We then use the ex-ante budget-

balancedness constraint to substitute for �
Pn

i=1 Ti(0)�
Pn

i=1M(0) in Equation (24) and obtain

the objective function and the conclusion that inequality (13) is a necessary condition for

individual rationality and ex-ante budget-balancedness.

To show that inequality (13) is a su¢ cient condition for individual rationality and ex-ante

budget-balancedness, �rst denote by q� and r�H the solution to the optimization problem stated

in the lemma. Let 	� denote the aggregate virtual surplus (the left-hand side of Equation

(13)) evaluated at q� and r�H . Second, compute M
� (0) using q� and r�H . Third, set T

� (0) =

�M�(0) � 1
n
	�. This guarantees ex-ante budget balancedness according to Equation (25).

Since the aggregate virtual surplus 	� is nonnegative by Equation (13), individual rationality

is satis�ed (i.e. �T � (0)�M�(0) � 0). Finally, to complete the description of the mechanism it
remains to de�ne the transfer functions (t�i (�))

n
i=1 such that for each player i; E��i(t�i (�i; ��i)) =

T �i (�i). One way to do this is simply to let t
�
i (�i; ��i) = T

�
i (�i). �

Proof of Lemma 3

Suppose that hq; rH ; t1; :::; tni is an auxiliary mechanism that satis�es incentive compatibility,

individual rationality, and ex-ante budget balancedness, but does not satisfy SP. We show a

modi�cation that increases the expected payo¤ to the players without a¤ecting the constraints.

Therefore, the given mechanism is not optimal.

Since the mechanism does not satisfy SP, there exists a non-zero measure of type realizations

(�i; ��i) for which q(�) > 0 and rH(�) < 1� �(n�m+1). Suppose we modify q into q0 as follows:

q0(�) =

(
q(�) if rH(�) � 1� �(n�m+1)

0 if rH(�) < 1� �(n�m+1)
.

That is, whenever the original mechanism purchases a noninstrumental signal, the modi�ed
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mechanism does not purchase a signal. Notice that

Q0(�i) =

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

q0(�i; ��i)dF (��i)

=

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

q(�i; ��i)dF (��i) = Q(�i)

M 0 (�i) =

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

(1� rH(�i; ��i)) � q0(�i; ��i)dF (��i)

=

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

(1� rH(�i; ��i)) � q(�i; ��i)dF (��i)

=M (�i) .

Denote the expected decrease in the cost of purchasing signals by

� =

Z
�jrH(�)<1��(n�m+1)

c(q(�); rH(�))dF (�) > 0.

For every i 2 f1; : : : ; ng de�ne
t0i(�̂) = ti(�̂)�

�

n
.

The new mechanism satis�es incentive compatibility and individual rationality because Q0 =

Q andM 0 =M , and the transfers decreased by a constant for all types (so that�M (0)�T (0) �
0). By construction, the mechanism is budget-balanced, and since the expected payment of type

0 decreases, then by Equation (24) the expected surplus increases. �

Proof of Proposition 2

The proof consists of three parts. First, we characterize the three functions, r�H (�; �) ; r
�
L (�; �),

and q� (�; �), that satisfy SP (see De�nition 1) and maximize L̂ (see Equation (18)), for any
type pro�le � and any multiplier � (for ease of exposition we omit the dependency of L̂ on
the type pro�le and the multiplier in the notation). Second, we show that for any � � 0,

the function q� (�; �) is increasing in each player�s type whereas r�H (�; �) is decreasing in each

player�s type. Hence, the function Q� (�i; �) that is induced by q� (�; �) (according to Equa-

tion (14)) is monotone. Third, we show that there exists �� � 0 for which the mechanism

de�ned by r�H (�; �
�) ; r�L (�; �

�) and q� (�; ��) generates zero aggregate virtual surplus. By the

Lagrange Su¢ ciency Theorem (see, e.g., Theorem C.1 in Kelly and Yudovina, 2014), the func-

tions r�H (�; �
�) ; r�L (�; �

�) and q� (�; ��) de�ne the mechanism that attains the maximal aggre-

gate surplus (Equation (12)) subject to the conditions that: (i) Q (�i) is monotone and (ii) the

aggregate virtual surplus (Equation (13)) is nonnegative.
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PART I. Fix a type pro�le � and a multiplier � > 0 and let w = w (�; �). Recall that, as

de�ned in the text, (~q; ~r) is the signal that solves (FOCq) and (FOCr), if such a signal exists.

By property (P3), if (~q; ~r) is interior then it is the unique signal that satis�es the necessary

conditions for being a local (or global) maximizer of L̂.

We consider three cases:

Case (i): Suppose that (~q; ~rH) is not interior, or that (FOCq) and (FOCr) do not have a
solution. Then, it is optimal to purchase no signal. This is because the signal that maximizes

L̂ must be a �corner solution�: either rH = 1, or q = p=rH (which is equivalent to rL = 0), or
q = 0 (which is equivalent to acquiring no information). Consider the corner solution (q; 1) for

some q > 0. This solution does not maximize L̂ because by property (P2) of the cost function,
1
n
c2 (q; 1) > 1 and therefore L2 (q; 1 ; w) < 0. Thus, decreasing rH increases L̂. Similarly, the
corner solution

�
p
rH
; rH

�
for some rH > p is also not a maximizer of L̂. This is because by (P2),

1
n
c1 (p=rH ; rH) > 1, and therefore L̂1 (p=rH ; rH ; w) < 0 for any w. Thus, the optimal solution
is the corner solution q = 0 in which no signal is acquired.

Case (ii): Suppose that (~q; ~rH) is interior and SP. Then, q�H (�; �) = ~q and r
�
H (�; �) = ~rH . To

prove this, it su¢ ces to show that (~q; ~rH) is better than any corner solution. This is because, by

property (P3) of the cost function, there are no other local or global interior maximizers for L̂.
The signals in which rH = 1, or q = p=rH are not optimal because of the argument presented

in Case (i) above. To see why acquiring no information (q = 0) is not optimal, consider the

function g (q) � q � 1
n
c1 (q; ~rH) � 1

n
c (q; ~rH) that is obtained by plugging (FOCq) into L̂. The

fact that c11 > 0 (by property P1) implies that g (0) = 0 and g0 (q) > 0 for every q > 0. Since

(~q; ~rH) is interior, ~q > 0 and consequently L̂ (~q; ~rH ; w) = g (~q) > 0. Namely, the signal (~q; ~rH)
generates a positive value of L̂, which is greater than 0 that is obtained when no information
is acquired.

Case (iii): Suppose that (~q; ~rH) is interior but not SP. Let qMSP be the value that satis-

�es (FOCq) when rH is set to its MSP value, i.e., rH = 1 � �(n�m+1). Thus, qMSP satis-

�es L1
�
qMSP ; 1� �(n�m+1) ; w

�
= 0. If qMSP 2 (0; p=rH) the optimal signal is r�H (�; �) =

1 � �(n�m+1) and q� (�; �) = qMSP . Otherwise, it is optimal to acquire no information, i.e.,

q� (�; �) = 0. To see this, recall again that (~q; ~rH) is the unique global (and local) maximizer

of L̂. Since (~q; ~rH) is not SP, the maximizer L̂ must be a corner solution: either acquire no
information (q = 0), or acquire the signals in which rH = 1 or q = p=rH , or acquire the sig-

nal
�
qMSP ; 1� �(n�m+1)

�
, which is possible only if qMSP 2 (0; p=rH). The argument in Case

(i) above implies that a signal with rH = 1 or q = p=rH does not maximize L̂.28 An argu-

ment similar to the one presented in Case (ii) above, with the only di¤erence that rH is equal to

28That is, unless �(n�m+1) = 0, in which case rH = 1 is in fact the MSP value of rH .
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1��(n�m+1) instead of ~rH , implies that if qMSP > 0 then L̂
�
qMSP ; 1� �(n�m+1) ; w

�
is positive,

which is higher than 0 that is obtained when no information is acquired.

We have thus characterized the functions r�H (�; �) ; r
�
L (�; �), and q

� (�; �) that satisfy SP

and maximize L̂ for the given type pro�le � and multiplier �. Notice that property (P3)

implies that the signal (~q; ~rH) is continuous in �1; : : : ; �n and �,29 and therefore the functions

r�H (�; �) ; r
�
L (�; �) and q

� (�; �) are also continuous in �1; : : : ; �n and �.

PART II. Fix a player i, a type pro�le ��i of all the players other than i, and a multiplier
�. For simplicity, we omit ��i and � from the notation and write q� (�i), r�H (�i), w (�i) ; c

�
i (�i),

and c�ij (�i) instead of q
� ((�i; ��i) ; �), r�H ((�i; ��i) ; �), w ((�i; ��i) ; �), ci (q

� (�i) ; r
�
H (�i)), and

cij (q
� (�i) ; r

�
H (�i)), respectively.

To show that q� (�i) is increasing in �i while r�H (�i) is decreasing in �i we prove three lemmas

that, taken together with the results of Part I, imply the desired monotonicity result. Lemma

4 asserts that if a signal is acquired when player i�s type is �i, then a signal is also acquired

when player i�s type is higher than �i. This implies that there exists some cuto¤ type �0i such

that if �i < �0i then no signal is acquired, i.e., q
� (�i) = 0 and r�H (�i) = 1,

30 and if �i > �0i then

some information is acquired (i.e., q� (�i) > 0).

Lemma 5 shows that if an interval (a; b) � [�0i; 1� p] is such that the optimal signal is interior
when �i 2 (a; b), then q� (�i) is increasing in �i, and r�H (�i) is decreasing in �i, as �i varies within
(a; b). Lemma 6 shows that this monotonicity of q� (�i) and r�H (�i) holds also when �i varies

within an interval (a; b) � [�0i; 1� p], if the optimal signal for every �i 2 (a; b) is such that rH
attains the MSP value 1� (�i; ��i)(n�m+1) and q is determined according to Equation (FOCq).

Lemma 4 Suppose that q� (�i) > 0 for some �i. Then q� (�i) > 0 for all �0i > �i.

Proof. The fact that q� (�i) > 0 implies that acquiring a signal is bene�cial for the type pro�le
(�i; ��i), which means that L̂ (q� (�i) ; r�H (�i) ; w (�i)) � 0. The fact that (q� (�i) ; r�H (�i))

is optimal for the type pro�le (�i; ��i) implies that r�H (�i) satis�es SP, i.e. r�H (�i) � 1 �
(�i; ��i)

(n�m+1).

Consider a type �0i of player i such that �
0
i > �i. Since the signal (q�H (�i) ; r

�
H (�i)) is SP

for the type pro�le (�i; ��i), it follows that it is also SP for the type pro�le (�0i; ��i), because

(�0i; ��i)
(n�m+1) � (�i; ��i)(n�m+1). Thus,

L̂ (q� (�0i) ; r�H (�0i) ; w (�0i)) � L̂ (q� (�i) ; r�H (�i) ; w (�0i)) > L̂ (q� (�i) ; r�H (�i) ; w (�i)) � 0.
29By Berge�s theorem, the set-valued map from w to maximizers of L̂ (q; rH ;w) is upper-hemicontinuous.

However, since by (P3), for every w the function L̂ (�; �;w) has a unique maximizer, i.e., the set-valued map is a
singleton for each w, it follows that ~rH ; ~q are continuous in w, which is itself continuous in �1; : : : ; �n and �.
30When q = 0 no information is acquired and the value of rH does not matter. Hence, there�s no loss in

assuming that in this case rH = 1.
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The �rst inequality is because the signal q� (�0i) ; r
�
H (�

0
i) generates the highest value of L̂ among

all the signals that satisfy SP. The second inequality follows from the facts that, all else equal,

L̂ is increasing in w, and w (�0i) > w (�i) because the virtual value is increasing in each player�s
type. Finally, L̂ (q� (�0i) ; r�H (�0i) ; w (�0i)) > 0 implies that q� (�0i) > 0.

Lemma 5 Suppose that r�H (�i) = ~rH (�i) and q
� (�i) = ~q (�i) for all �i in some interval (a; b).

If �i; �0i 2 (a; b) such that �0i > �i, then q� (�0i) > q� (�i) and r�H (�0i) < r�H (�i).

Proof. By de�nition, for any �i 2 (a; b) the (interior) signal (q� (�i) ; r�H (�i)) satis�es

r�H (�i)� 1 + w (�i) =
1

n
c�1 (�i) , and (26)

q� (�i) =
1

n
c�2 (�i) . (27)

In addition, since q� (�i) ; r�H (�i) maximizes L̂ (�; � ; w (�i)), it follows that the determinant of
the Hessian matrix that is associated with L̂ is nonnegative when evaluated at q� (�i) ; r�H (�i).
That is, �

� 1
n
c�11 (�i)

�
�
�
� 1
n
c�22 (�i)

�
�
�
1� 1

n
c�12 (�i)

�2
� 0. (28)

The fact that (26) and (27) hold simultaneously for all �i 2 (a; b) implies that the derivatives
with respect to �i on both sides of each equation must also be the same. Thus,

dr�H (�i)

d�i
+
dw (�i)

d�i
=
dq� (�i)

d�i
� 1
n
c�11 (�i) +

dr�H (�i)

d�i
� 1
n
c�12 (�i) , and

dq� (�i)

d�i
=
dq� (�i)

d�i
� 1
n
c�21 (�i) +

dr�H (�i)

d�i
� 1
n
c�22 (�i) .

Since c is twice continuously di¤erentiable, c�12 (�i) = c�21 (�i). Solving for dr
�
H (�i) =d�i and

dq� (�i) =d�i we obtain

dq� (�i)

d�i
=

1
n
c�22 (�i) �

dw(�i)
d�i

1
n
c�11 (�i) � 1nc�22 (�i)�

�
1� 1

n
c�12 (�i)

�2 (29)

dr�H (�i)

d�i
=

�
1� 1

n
c�12 (�i)

�
� dw(�i)

d�i

1
n
c�11 (�i) � 1nc�22 (�i)�

�
1� 1

n
c�12 (�i)

�2 (30)

The numerator of (29) is positive because dw (�i) =d�i > 0 and c�22 (�i) > 0 (by property P1).

The denominator of (29) is positive by Equation (28). Thus, dq� (�i) =d�i > 0 and therefore

q� (�0i) > q
� (�i).
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To show that r�H (�
0
i) < r�H (�i) it su¢ ces to show that 1

n
c�12 (�i) > 1. This is because,

by Equations (28) and (30) and since dw (�i) =d�i > 0, the sign of dr
�
H(�i)

d�i
is the same as the

sign of 1 � 1
n
c�12 (�i). To see why

1
n
c�12 (�i) > 1, hold r�H (�i) �xed and de�ne the functions

g (q) � 1
n
c2 (q; r

�
H (�i)) and h (q) � q. Since g is increasing and convex in q (because of P1),

while h is increasing and linear in q, it follows that g and h intersect for at most two values of

q, where the slope of g is greater (less) than the slope of h at the higher (lower) intersection

point. Since g (0) = h (0) and g (q� (�i)) = h (q� (�i)), as implied by Equation (27), and since

q� (�i) > 0, we deduce that g0 (q� (�i)) > h0 (q� (�i)), i.e. 1
n
c�12 (�i) > 1.

Lemma 6 Suppose that r�H (�i; ��i) = 1 � (�i; ��i)(n�m+1) and q� (�i; ��i) > 0 is determined

according to (FOCq) for all �i in some interval (a; b). If �i; �0i 2 (a; b) and �0i > �i, then

q� (�0i) � q� (�i) and r�H (�0i) � r�H (�i).

Proof. The fact that r�H (�
0
i) � r�H (�i) follows immediately from the observation that �0i > �i

implies that (�0i; ��i)
(n�m+1) � (�i; ��i)(n�m+1). Therefore dr�H (�i) =d�i < 0. It remains to show

that q� (�0i) � q� (�i).
Given r�H (�i), the value of q

� (�i) is determined according to (FOCq):

r�H (�i)� 1 + w (�i) =
1

n
c�1 (�i) .

Since the equality holds for any � 2 (a; b), the derivatives with respect to �i on both sides of
the equation must also be the equal. Therefore:

dr�H (�i)

d�i
+
dw (�i)

d�i
=
dq� (�i)

d�i
� 1
n
c�11 (�i) +

dr�H (�i)

d�i
� 1
n
c�12 (�i)

Solving for dq� (�i) =d�i, we obtain

dq� (�i)

d�i
=

�
1
n
c�12 (�i)� 1

�
�
�
�dr�H(�i)

d�i

�
+ dw(�i)

d�i

1
n
c�11 (�i)

. (31)

The fact that r�H (�i) = 1� (�i; ��i)
(n�m+1) means that the SP constraint is binding. Hence,

L̂2 (q� (�i) ; r�H (�i) ; w (�i)) � 0, or equivalently q� (�i) � 1
n
c�2 (�i). Hence, an argument that

is similar to the one presented in the last paragraph of the proof of Lemma 5 leads to the

conclusion that
1

n
c�21 (�i) > 1.

Since, in addition, dw (�i) =d�i > 0 (because virtual values are increasing in types), c�11 (�i) > 0

(by property P1) and dr�H (�i) =d�i < 0 it follows that Equation (31) implies that dq
� (�i) =d�i > 0

and therefore q� (�0i) > q
� (�i).

47



Part III. For any two signal functions q : �n ! [0; 1] and rH : �n ! [0; 1], denote the aggregate

surplus they induce (Equation (12)) byW (q; rH), and the aggregate virtual surplus they induce

(Equation (13)) by V (q; rH). Notice that q and rH in this part of the proof denote functions

rather than constants. Using this notation, the Lagrangian associated with our maximization

problem (de�ned in Lemma 2) is

L (q; r; �) = 1

1 + �
W (q; r) +

�

1 + �
V (q; r) (32)

=

Z
�

�
q (�) � [rH (�) + w (�; �)� 1]�

1

n
c (q (�) ; rH (�))

�
dF n (�) (33)

where (33) is identical to (16) and given here for ease of reference. For any �, denote by q�;�

and r�;�H the signal functions that were characterized in Part I of the proof and correspond to

this value of � (that is, q�;� (�) = q� (�; �) and r�;�H (�) = r�H (�; �), for any type pro�le �).

If V (q�;0; r�;0H ) � 0 then the proof is complete. In this case, the optimal signal functions

are q�;0 r�;0H . As we show in Parts I and II, these functions maximize the aggregate surplus W

pointwise (that is, for any type pro�le �) and induce a monotone functionQ. Since V (q�;0; r�;0H ) �
0 they also generate a nonnegative aggregate virtual surplus.

Suppose alternatively that V (q�;0; r�;0H ) < 0. Then, there exists �
� > 0 for which V (q�;�

�
; r�;�

�

H ) =

0. To see why, notice �rst that if V (q�;0; r�;0H ) < 0, then it must be the case that a signal is

purchased for a set of type pro�les with a non-zero measure. Notice also that for any signal

(q; rH), the value of L̂ (de�ned in Equation (18)) is increasing in each player�s type (via w).
Taken together, these facts imply that when � = 0, the maximum of L̂ is strictly positive for
all type pro�les in a neighborhood of �max = (1� p; : : : ; 1� p). Suppose now that � ! 1.
Because for any type pro�le � that is close to �max, the value of w (�;1) is close to the value of
w (�; 0) (which is close to 1� p), and because c is continuous, then when �!1 the maximum

of L̂ is strictly positive (and bounded away from zero) for all type pro�les in the neighborhood

of �max. Thus, when �!1, Equation (33) implies that L(q�;�; r�;�H ; �) > 0 and Equation (32)
implies that V

�
q�;�; r�;�H

�
> 0. Finally, notice that V (q�;�; r�;�H ) is continuous in �. This is

because, for every �: (i) the optimal signal q�;� (�) ; r�;�H (�) is continuous in �,31 and (ii) V is

continuous in q (�) and r (�). Since we started by assuming that V (q�;0; r�;0H ) < 0, the continu-

ity of V (q�;�; r�;�H ) in � implies that there exists �
� > 0 for which V (q�;�

�
; r�;�

�

H ) = 0. By the

Lagrangian su¢ ciency theorem, the optimal signal is then characterized by the functions q�;�
�

and r�;�
�

H .

For completeness of the argument we now explain why the Lagrangian su¢ ciency theorem,

31To see this, notice that for any �, the values of q� (�) and r� (�) depend on � only thorough w (�; �), and as
the analysis in Part I suggests they are continuous in w.
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adapted to our problem�s setting, implies that q�;�
�
; r�;�

�

H are the optimal signal functions. To see

this, notice that since V (q�;�
�
; r�;�

�

H ) = 0 it follows that L(q�;�� ; r�;�
�

H ; ��) = 1
1+��W (q

�;�� ; r�;�
�

H ).

Since q�;�
�
and r�;�

�

H maximize the integrand of L (�; �; ��) pointwise (that is, for every type pro�le
�), L(q�;�� ; r�;�

�

H ; ��) � L (q; rH ; ��) for any two signal functions q and rH . Since our problem�s
constraint requires the signal functions q and rH to generate a nonnegative aggregate virtual

surplus (i.e., V (q; rH) � 0), it follows that L (q; rH ; ��) = 1
1+��W (q; rH) +

��

1+��V (q; rH) �
1

1+��W (q; rH). Taken together, these observations imply that W (q
�;�� ; r�;�

�

H ) � W (q; rH) for

any two signal functions q; rH that satisfy V (q; rH) � 0.�

Proof of Proposition 3

By Corollary 2, there exists an optimal auxiliary mechanism in which truth-telling is a dominant

strategy. Consider an actual mechanism with the same functions q�, r�H and r
�
L and the same

transfer rules (the only di¤erence between the auxiliary and actual mechanisms is that in the

latter the players are not bound by their report in the ensuing voting game). We will show that

truth-telling is a dominant strategy also in the actual mechanism.

Assume, by contradiction, that truth-telling is not a dominant strategy in the actual mech-

anism. This means that there is a type �i of player i that prefers to report some �0i 6= �i in the
actual mechanism, but not in the auxiliary mechanism, when the other players report some ��i
(which may not coincide with their true types).

It cannot be that q�(�0i; ��i) = 0 (to simplify the notation we omit throughout this proof the

dependence of q�, r� and r�L on the value of �
�). To see why, note that when no information is

acquired (i.e., q�(�0i; ��i) = 0) player i prefers the action a = 0 in the voting game that follows

the actual mechanism. But this is precisely the action that the auxiliary mechanism chooses

when q�(�0i; ��i) = 0. Since player i does not want to deviate and report �0i in the auxiliary

mechanism, he has no incentive to do so in the actual mechanism.

Suppose that q�(�0i; ��i) > 0. When the posterior belief r
�
L(�

0
i; ��i) is realized, the auxiliary

mechanism votes for a = 0 on player i�s behalf. But since r�L(�
0
i; ��i) < p this is also the action

that player i prefers in the voting game that follows the actual mechanism. Suppose then that

the posterior r�H(�
0
i; ��i) is realized. Recall that since signals that are purchased in the optimal

auxiliary mechanism are SP, r�H(�
0
i; ��i) � 1 � (�0i; ��i)

(n�m+1) � p. If for such a posterior,

player i votes for a = 1 in the second-stage game following the actual mechanism, then again

his action coincides with the action that the auxiliary mechanism chooses for him. Therefore,

for i to have a pro�table deviation in the actual mechanism but not in the auxiliary mechanism,

it must be the case that after r�H(�
0
i; ��i) > 1� (�0i; ��i)

(n�m+1) player i prefers to vote for a = 0.

This means that player i of type �i strictly gains by increasing the chances of the default action.

He may further increase his net utility if m(�0i; ��i) + ti(�
0
i; ��i) < m(�i; ��i) + ti(�i; ��i). Since
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by the monotonicity of q� we have q� (0; ��i) � q� (�i; ��i), and since m(0; ��i) + ti(0; ��i) �
m(�i; ��i) + ti(�i; ��i) (which immediately follows from the fact that type 0 does not want to

report �i in the auxiliary mechanism), it must be the case that the most pro�table deviation is

to report �0i = 0.

If q� (0; ��i) < q� (�i; ��i) or m(0; ��i) + ti(0; ��i) < m(�i; ��i) + ti(�i; ��i) then player i has

a pro�table deviation already in the auxiliary mechanism by reporting that his type is 0. This

contradicts truth-telling being a dominant strategy. Otherwise, player i is indi¤erent between

reporting the truth and his most pro�table deviation in the actual mechanism, contradicting

our initial assumption that player i has a pro�table deviation in the actual mechanism. We

have therefore established that truth-telling is a dominant strategy in the actual mechanism.

Finally, note that in the optimal auxiliary mechanism in which truth-telling is a dominant

strategy the budget balancedness constraint is satis�ed only ex ante. Therefore, the budget of

the actual mechanism de�ned above is also balanced only ex ante. However, since truth-telling

is a dominant strategy in the actual mechanism, it is also a Bayesian Nash equilibrium. Thus,

by Borgers (2015, p.47), we can modify the transfers to satisfy ex-post budget balancedness

without a¤ecting the interim expected transfers, and hence truth-telling remains a Bayesian

Nash equilibrium. Furthermore, the individual rationality of the auxiliary mechanism also

carries over to the actual mechanism. Thus, the resulting actual mechanism satis�es incentive

compatibility, individual rationality, and budget balancedness ex-post. Since, as we explained

in the main text, the expected surplus that is achievable by the optimal actual mechanism is

bounded above by the expected surplus that is achievable by the optimal auxiliary mechanism,

it follows that the actual mechanism we de�ned above is the optimal one. �

Proof of Proposition 4

We prove each of the three cases separately. Speci�cally, we show that the optimal mechanism

results in no signal acquisition for some positive measure of type pro�les. And, when � is

su¢ ciently small, then there is also a positive measure of type pro�les for which the optimal

mechanism results in acquiring both interior and MSP signals.

Case (i). Consider any type pro�le � such that �i < " for some small " > 0 and for all

i 2 f1; : : : ; ng. The SP constraint implies that, if a signal is acquired for this type pro�le, then
rH � 1 � �(n�m+1) > 1 � ". To check whether acquiring such a signal is better than staying
uninformed, we evaluate the derivative of L̂ (Equation (18)) with respect to q, for values of
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rH � 1� " and of q > 0

L̂1 (q; rH ; w (�; ��)) = rH � (1� w (�; ��))�
1

n
c1 (q; rH) < 1� (1� ")�

1

n
c1 (q; rH) (34)

< "� 1

n
c1 (0; 1� ") , (35)

where the �rst inequality is because rH < 1 and w (�; ��) < ", and the second inequality is

because c11 > 0 and c12 > 0. Since c1 (0; 1) > 0,32 and because c is continuously di¤erentiable,

it follows that for " su¢ ciently small, " < 1
n
c1 (0; 1� ") = �

n
ĉ1 (0; 1� "). Thus, for small values

of ", L̂1 (q; rH ; w (�; ��)) < 0 for all of rH � 1 � " and q > 0, implying that decreasing q

increases the value of L̂. Therefore, acquiring no signal is better than acquiring any informative
signal for the type pro�le �.

Case (ii). Consider the type pro�le � for which �1 = : : : = �n = (1� p). Notice that
w (�; ��) = 1 � p, regardless of ��. Notice also that since 1 � �(n�m+1) = p, the SP constraint
has no bite for the type pro�le �, because any signal with rH � p is supermajority persuasive.
Therefore, the optimal signal for �, i.e., q� (�) and r�H (�), is the signal that maximizes

L̂ (q; rH ; (1� p)) = q (rH � p)�
1

n
c (q; rH) = q (rH � p)�

�

n
ĉ (q; rH) . (36)

When � is su¢ ciently small, the maximum of (36) is strictly positive and is attained at q� >

0 and r�H > p. Therefore, for the type pro�le �, acquiring a signal is better than staying

uninformed.

Consider now any type pro�le �0 that is �close to�� in the sense that �0i > (1� p) � " for
some small " > 0 and for all i 2 f1; : : : ; ng. Since the maximizers of L̂ are continuous in w
(because of P3; see also the discussion in footnote 29), and because w is continuous in each of

the components of the type pro�le, it follows that q�H (�
0) is close to q�H (�), and r

�
H (�

0) is close

to r�H (�). This implies that for the type pro�le �
0, acquiring a signal is better than staying

uninformed. Also, the optimal signal for �0 is SP but not MSP. This is because, when " is

su¢ ciently small, r�H (�
0) > p+ " > 1� (�0)(n�m+1).

Case (iii). Consider the type pro�le � for which �1 = � � � = �n�1 = 0 and �n = 1� p. There
exists �� such that for all � < ��: (i) the multiplier ��, de�ned in Proposition 2, is close to zero

such that w (�; ��) > (1�p)
2n
, and (ii) � < (1�p)

4�ĉ1(0;1) .
33 Suppose that � < ��. Since m > 1, the

SP constraint implies that, if a signal is acquired for the type pro�le �, then it must be that

32To see this, notice that c1 (0; p) = 0 and c12 > 0. In our leading speci�cation, where the cost function is
proportional to the mutual information between the signal realization and the state, we have that c1 (0; 1) =
�� ln (p).
33Note that ĉ1 (0; 1) is �nite because c1 (0; 1) is �nite.
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r�H (�) = 1. To check whether acquiring a signal with rH = 1 is better than staying uninformed,

we evaluate the derivative of L̂ with respect to q, at rH = 1 and q = 0:

L̂1 (0; 1 ; w (�; ��)) = 1� (1� w (�; ��))�
�

n
ĉ1 (0; 1) >

(1� p)
2n

� �
n
ĉ1 (0; 1) >

(1� p)
4n

> 0,

where the �rst inequality is because w (�; ��) > (1�p)
2n

and the second inequality is because

� < (1�p)
4�ĉ1(0;1) . Thus, when r

�
H (�) = 1, the value of q� (�) is strictly positive, and acquiring a

signal with rH = 1 is better than staying uninformed. The fact that c2 (q; 1) = 1 for all q

implies that the derivative of L̂ with respect to rH , evaluated at rH = 1 and q = q� (�), is

negative, i.e., q� (�)� 1
n
c2 (q

� (�) ; 1) < 0. Therefore, the signal q� (�) ; r�H (�) is not interior and

the MSP constraint is strictly binding.

Consider now any type pro�le �0 that is �close to� � in the sense that �0i < " and �0n >

(1� p) � " for some small " > 0 and for all i 2 f1; : : : ; n� 1g. As before, the fact that the
maximizers of L̂ are continuous in w, and w is continuous in each of the components of �,

implies that the interior maximizer of L̂ violates SP, and that in the optimal signal MSP is
binding, i.e., r�H (�

0) = 1 � (�0)(n�m+1). Thus, r�H (�0) is close to r�H (�0), and q� (�0) is close to
q� (�), and therefore acquiring an MSP signal is better than staying uninformed. �
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