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Abstract

We study how the suspicion that communicated information might be deceptive af-

fects the nature of what can be communicated in a sender-receiver game. Sender is said

to deceive Receiver if she sends a message that induces a belief that is different from the

belief that should have been induced in the realized state. Deception is costly to Sender

and the cost is endogenous: it is increasing in the distance between the induced belief and

the belief that should have been induced. A message function that induces Sender to en-

gage in deception is not credible and cannot be part of an equilibrium. We study credible

communication with state-dependent and state-independent Sender’s preferences. The

cost of deception parametrizes the sender’s ability to commit to her strategy. Through

varying this cost, our model spans the range from cheap talk, or no commitment (Craw-

ford and Sobel, 1982) to full commitment (Kamenica and Gentzkow, 2011).
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1 Introduction

Communication is indispensable for almost every economic and social interaction. Often-

times, an agent with superior information conveys this information strategically to others in

order to influence their behavior. If the interests of the parties are not perfectly aligned, then

the informed agent may benefit from being dishonest. Yet, research shows that in many cases,

in addition to possibly producing material gains, dishonesty is also costly.1 How does the cost

of dishonesty affect the nature of what can be communicated between the parties? The an-

swer to this important question depends, obviously, on the source and form of this cost.

What makes an untruth costly to communicate? If Alice and Bob both stand outdoors at

midday, and Alice tells Bob that it is midnight, this is a lie. If, when exiting the dentist’s office,

Alice announces that she just had the best time of her life, this is also a lie. However, if Bob is

a “reasonable person,”2 these lies do not change his perception of reality. Many would argue

that lies that are not believed are costless.

In this paper we take the position that dishonesty is costly only to the extent that it un-

dermines beliefs. Indeed, a common distinction between lying and deception is that a lie is

“a statement that the speaker believes is false” whereas deception is a “statement – or action

– that induces the audience to have incorrect beliefs” (Sobel, 2020).3 Accordingly, we assume

that deception (rather than mere lying) is costly, and study how the suspicion that commu-

nicated information might be deceptive affects the nature of what can be communicated in

equilibrium.

We study a standard model of communication between an informed Sender (she) and an

uninformed Receiver (he) to which we add a cost of deception. Sender observes a certain

variable and sends a message about it to Receiver who, upon receiving the message, updates

his belief and takes an action. Receiver’s beliefs on the relevant variable depend on the prior

distribution, Sender’s equilibrium strategy, and the actual message sent. Sender is said to

deceive Receiver if she sends a message that is different from what she was supposed to send

according to her equilibrium strategy, in a way that distorts Receiver’s beliefs relative to his

equilibrium expectations. We assume that the cost of deception to Sender is increasing in the

“distance” between the belief induced by the message actually sent, and the belief that should

have been induced under the message that was supposed to be sent in equilibrium.

The novelty in our approach is two-fold. First, we introduce a (belief-dependent) cost of

deception into communication games. This allows us to investigate the effect that costly de-

ception has on the information that is communicated in equilibrium. The form of deception

cost employed reflects the emphasis we place on the fact that untruths are costly only to the

1See, e.g., Abeler, Nosenzo and Raymond 2019 for a survey of the extensive experimental literature that docu-
ments this cost.

2See, e.g., https://en.wikipedia.org/wiki/Reasonable_person.
3As emphasized by Sobel (2020), these definitions imply that a lie need not be deceptive, and deception need

not involve lying.
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extent that they affect Receiver’s beliefs. Second, because the cost of deception in our model

is measured relative to Receiver’s equilibrium expectations, it is endogenous to the model. This

stands in contrast to other papers such as Sobel (2020) and Kartik (2009), in which truthfulness

is evaluated relative to an exogenous standard. This distinction is important for two different

reasons: (i) conceptually, deception can arguably only be evaluated relative to equilibrium ex-

pectations. After all, if Receiver does not anyway believe Sender, then he cannot be deceived.

And, (ii) methodologically, as explained below, endogenous deception costs imply that com-

munication need not be monotone, which requires the development of new proof techniques

and generates new insights.

Our approach conforms with traditional equilibrium analysis. We say that Sender’s strat-

egy is credible if it does not induce Sender to engage in deception. Clearly, a strategy that

is not credible cannot be sustained in equilibrium, and we are only interested in what can

be communicated in equilibrium. However, although no deception occurs along the path of

play, the mere possibility of deception has a large effect on the information that is conveyed

by Sender. Indeed, equilibria are oftentimes interpreted as self-enforcing “social norms.” If

a communication norm is established, it prescribes certain beliefs for the receiver. A deviat-

ing Sender understands that her Receiver will update his belief according to the norm, and

that she is therefore deceiving him in a particular way. A conscientious Sender would be dis-

turbed by such deception. The cost of deception in our model captures the magnitude of this

disturbance.4

The ability of Sender to deceive Receiver is closely related to Sender’s ability to commit to

her message strategy, in the sense of sending the specific message prescribed by the strategy

and not a different message. A sufficiently large cost of deception implies “full commitment”

of Sender to her message strategy. Such a commitment is obviously very valuable. It is a stan-

dard assumption in the literature on Bayesian persuasion (Kamenica and Gentzkow, 2011). By

contrast, costless deception implies that Sender cannot commit to follow her message strategy

and that, consequently, messages should be interpreted as mere “cheap talk” (Crawford and

Sobel, 1982). Both of these extreme cases serve as useful benchmarks for us. They have both

been extensively studied in the literature. Through varying the cost of deception in our model,

it is possible to span the range from cheap talk, or no commitment, to full commitment.

A motivating example. There are two players: Sender (she) and Receiver (he), and a binary

state ω ∈ {0,1}. The prior belief that ω = 1 is one-third. Receiver has to choose an action

a ∈ {0,1}. His payoff is given by −|a −ω|. Hence, Receiver prefers to take action a = 1 if and

only if his posterior belief that the state is ω= 1 is at least one-half. The payoff for Sender is a.

She therefore prefers that Receiver chooses action a = 1 regardless of the state.

Suppose that Sender knows the state. If Sender has no qualms about deceiving Receiver,

then it is impossible to sustain informative communication in equilibrium. This is because

4We are grateful to an anonymous referee for this interpretation.
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Sender would never send a message that would lead Receiver to choose a = 0. Expecting this,

Receiver would ignore Sender’s message, and choose the action a = 0, which is optimal given

the prior belief. The payoff to Sender in this case is zero.

Suppose however that it is costly for Sender to deceive Receiver: if Sender deviates from

the message that Receiver “anticipates” her to send given the state, then she incurs a cost.

Suppose that this cost is equal to the difference between Receiver’s posterior belief that the

state is ω= 1 that is induced by Sender’s actual message, and the belief that should have been

induced by Sender’s anticipated message.

In this case, it is possible to sustain an equilibrium in which Sender reveals the state. In

this equilibrium Sender sends message m1 in state ω = 1 and message m0 in state ω = 0. Re-

ceiver’s posterior belief that the state is ω = 1 following message m1 (resp. m0) is 1 (resp. 0),

and so he takes action a = 1 (resp. a = 0). To verify that this is indeed an equilibrium, note

that Sender cannot benefit from deceiving Receiver and sending message m1 in state ω = 0.

Sender’s material gain from this deviation is one (because Receiver would take action a = 1

instead of a = 0). However, this gain is exactly offset by Sender’s cost of deception (because

Receiver’s posterior belief that the state isω= 1 following this deception is one instead of zero).

The (expected) payoff to Sender in this equilibrium is one-third.

At the extreme, if deception is infinitely costly for Sender, then she can obtain an even

higher payoff. In this case, Sender has full commitment power and so, as shown by Kamenica

and Gentzkow (2011), she can obtain an expected payoff of two-thirds by employing the fol-

lowing strategy: when the state is ω = 1, send message m1; and when the state is ω = 0, send

messages m1 and m0 with equal probabilities. Given this strategy, Receiver takes action a = 1

following message m1 and action a = 0 following message m0. Because deception is infinitely

costly, Sender cannot benefit from deviating and sending message m1 when she should send

message m0.

In Section 2 we present the model and formally define the notion of deception costs. In

Section 3 we study the implications of the possibility of costly deception in an environment

in which Sender’s payoff depends on the state of the world. To that end, we introduce the

possibility of costly deception into the uniform-quadratic specification of Crawford and So-

bel’s (1982) model of strategic communication. The key difference between the equilibria that

emerge in Crawford and Sobel’s (1982) model and in ours is that in Crawford and Sobel (1982)

every equilibrium is a partition equilibrium in which each element of the partition is an inter-

val of Sender’s types.5 By contrast, in our model Sender may induce a credible partition of the

state space with non-convex elements. However, we show that the optimal partition for Sender

consists only of intervals. Our proof technique, which we explain in detail in Section 3, is sub-

stantially different from that of Crawford and Sobel (1982). This result allows us to explicitly

5Specifically, every equilibrium in Crawford and Sobel (1982) induces a partition of the sender’s type space
into intervals such that all the sender’s types that belong to the same interval send the same message.
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solve for the optimal partition for Sender and describe how it relates to the optimal partition

in Crawford and Sobel (1982). The fact that deception is costly facilitates more informative

communication between Sender and Receiver compared to the most informative equilibrium

in Crawford and Sobel (1982). In fact, we show that increasing the cost of deception is akin to

decreasing the value of the parameter that measures the sender’s bias in Crawford and Sobel’s

uniform-quadratic model.

In Section 4 we apply our definition of costly deception to a model in which Sender’s pay-

off is independent of the state of the world. For this purpose, we introduce the possibility of

costly deception into the payoff environment of Kamenica and Gentzkow’s (2011) leading ex-

ample. We provide a geometric characterization of Sender’s highest equilibrium payoff in this

model. We show that this highest payoff is obtained on a partial concavification of Sender’s

indirect payoff function with a bounded slope. We show that Sender’s value is continuous in

the cost of deception parameter but may be discontinuous in prior beliefs. We describe envi-

ronments where communication involves either more or less garbling compared to the case

of full commitment. Finally, we show that a lower cost of deception always hurts Sender and

discuss the circumstances under which it either benefits or hurts Receiver.

In Section 5 we discuss two additional issues: an alternative tie-breaking rule for Receiver

and the number of messages employed by Sender in an optimal credible message function.

Section 6 concludes.

Related Literature

Sobel (2020) introduces game-theoretic definitions of lying and deception.6 Our definition of

deception is consistent with his in that, in our model too, deception involves inducing “in-

correct beliefs.” However, we also add a cost of deception that is not explicitly incorporated

into Sobel’s model. Another key distinction is that, according to our definition, deception is

measured with respect to equilibrium beliefs and is therefore endogenous, whereas in Sobel’s

model, deception is measured with respect to the true state, and so is determined by an ex-

ogenous standard.7

Kartik (2009) is perhaps closest in spirit to the ideas introduced in the part of our analysis

in which Sender’s preferences do depend on the state of the world. Kartik (2009) extends the

analysis of Crawford and Sobel (1982) by incorporating the possibility of costly lying into the

communication game. The cost of lying in Kartik’s (2009) model depends only on the state and

6Sobel employs Austin’s (1975) classification of speech acts: locution is what the speaker says; illocution refers
to the interpretation of what she says; and perlocution is the consequences of the statement. A lie is a statement
that the speaker believes is false. It is therefore defined purely in terms of locution. Deception is a statement or
action that induces the audience to have incorrect beliefs. It is therefore an illocutionary act.

7Sobel defines a message to be deceptive if it induces beliefs that are a mixture between the beliefs that are
induced by some other message and some completely inaccurate beliefs that shift Receiver’s beliefs “further from
the truth.”
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the literal message used by the sender, which may be interpreted as an announcement about

the state. Equilibria in Kartik’s model involve lying, but no deception. The key distinction

between Kartik’s (2009) model and ours is that we measure the cost of deception in terms of

the differences in the receiver’s induced beliefs. Another distinction is that, unlike in this pa-

per, Kartik (2009) restricts attention to monotone equilibria. Consideration of non-monotone

equilibria is important because it is not a-priori known whether the Sender- (or Receiver-)

optimal equilibrium is indeed monotone. In Section 3 we devote a large part of the analysis

to showing that the Sender-optimal equilibrium is indeed monotone also when deception is

costly.8

A key difference between the equilibrium predictions of Kartik’s (2009) model (and other

related models, e.g., Ottaviani and Squintani, 2006) and the model presented in our Section 3

is that while equilibria in Kartik’s (2009) model have a hybrid form, such equilibria do not exist

in our Section 3 model. Specifically, in Kartik’s (2009) model, the sender may pool her type on

an interval of low states, and fully separate elsewhere. By contrast, in our model, either there

is full separation, or pooling within intervals. This difference is due to the fact that in Kartik’s

(2009) model, mimicking a higher type is associated with a cost that depends both on the

message sent and on the true state, and therefore may be different for different types, whereas

in our model deception cost depends only on differences in equilibrium beliefs.9

The paper that is closest to the analysis in Section 4 is Guo and Shmaya (2021).10 They

consider a setting in which a sender provides probabilistic forecasts to a receiver through mes-

sages that have literal meaning in the form of “asserted distributions over states.” The sender

in their model bears a miscalibration cost that depends on the discrepancy between the fore-

cast and the truth. By contrast, in our model the meaning of the sender’s messages is deter-

mined endogenously in equilibrium (i.e., messages have no literal meaning in our model) and

the cost of deception depends on the distance between the beliefs that the sender actually in-

duced and the beliefs that the sender should have induced in equilibrium. Guo and Shmaya’s

notion of a calibrated equilibrium is credible according to our definition, but not vice-versa.11

Their main focus is on promotion games in which the receiver has two actions and the sender’s

preferences are independent of the state, and on the case in which the cost intensity param-

eter is large. In this latter case, they show that the sender attains her full-commitment payoff

8Other models of lying consider perturbed versions of games in which, with positive probability, the sender
is a behavioral type who always reports honestly; or the receiver is a behavioral type who interprets messages
literally, believing that the state is m after receiving the message m (Chen, 2011); or that players incur lying costs
when they break their promises to each other (Heller and Sturrock, 2020).

9Specifically, if types ω and ω+∆ both reveal themselves in equilibrium, then the cost of deception that type
ω incurs when mimicking type ω+∆ depends on ∆ but not on ω. It follows that if separation is possible in some
interval of the type space, then it is possible everywhere.

10However, while in Section 4 we consider the case in which Sender’s preferences are independent of the state
of the world, Guo and Shmaya (2021) consider general sender-receiver games in parts of their analysis.

11Guo and Shmaya (2021) study also equilibria in which costly miscalibration occurs. In contrast, in our model
deception does not occur in equilibrium.
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under any extensive-form rationalizable play. In our model, the sender also attains her full-

commitment payoff when deception is sufficiently costly.12

Another sense in which the model of Guo and Shmaya (2021) is similar to ours is that by

varying the cost intensity parameter, it bridges the gap between cheap-talk models (such as

Crawford and Sobel, 1982, and Lipnowski and Ravid, 2020) and models in which the sender

has full-commitment power (Kamenica and Gentzkow, 2011). Another paper that bridges this

gap is Lipnowski, Ravid and Shishkin (2022). In their model a sender commissions a study

to persuade a receiver, but may influence the report with some state-dependent probability.

They show that increasing this probability can benefit the receiver and can lead to a discon-

tinuous drop in the sender’s payoffs.

When the sender’s preferences are independent of the state, the solution to the sender’s

problem admits an elegant geometric characterization. Kamenica and Gentzkow (2011) fa-

mously characterize the sender’s value in terms of the concave envelope of her indirect payoff

function. Lipnowski and Ravid (2020) characterize it in terms of the quasi-concave envelope

of the sender’s indirect payoff function, and Lipnowski, Ravid and Shishkin (2022) character-

ize it in terms of a mixture of the concave and quasi-concave envelopes of the sender’s indirect

payoff function. By contrast, in our framework, it is possible to characterize the sender’s value

in terms of the concave envelope of her indirect payoff function, with a bounded slope.

Other papers that study communication with partial commitment include Perez-Richet

and Skreta (2022) and Nguyen and Tan (2019). Perez-Richet and Skreta (2022) consider a

model in which an agent can manipulate a Blackwell experiment’s input at a cost. They char-

acterize receiver-optimal tests under different constraints in this setting. In Nguyen and Tan

(2019), a sender has the opportunity to privately change the publicly observed outcome of

a previously announced experiment, at a cost that depends on the outcome. They describe

conditions under which the sender does not alter the experiment’s outcome in the sender-

optimal equilibrium. In their model, the sender benefits from assigning her preferred beliefs

to messages that are harder to mimic.

Possibly misleading communication has also been studied experimentally. Recently,

Fréchette, Lizzeri and Perego (forthcoming) studied the role of commitment in communica-

tion experimentally using a framework that nests models of cheap talk, information disclo-

sure, and Bayesian persuasion. Gneezy (2005) and Fischbacher and Föllmi-Heusi (2008) are

examples of experimental papers on communication that associate the message to the state

and treat messages as lies if they are not equal to the state.

Finally, the fact that the sender’s payoff depends directly on the receiver’s endogenous be-

12The insight that changes in beliefs constrain the principal appears also in the context of the economics of
privacy. For example, in Eilat, Eliaz and Mu (2021) a mechanism designer is constrained by how much she is
allowed to learn about players where learning is measured in terms of the difference in the designer’s beliefs.
See also Krähmer and Strausz (forthcoming) and Gradwohl (2018). In contrast, in our paper the cost due to the
change in beliefs enters Sender’s payoff function rather than the constraints she faces.
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liefs implies that the game we consider is a psychological game (Geanakoplos, Pearce and

Stacchetti, 1989, Battigalli and Dufwenberg, 2009).13 This literature explains the distaste for

lying as an aversion to guilt (Battigalli and Dufwenberg, 2007).14 Other papers consider com-

munication between an informed sender and an uninformed receiver within the framework

of psychological games, as we do, but with a very different focus from ours. See for example

Caplin and Leahy (2004), Ottaviani and Sørensen (2006), Ely, Frankel and Kamenica (2015),

and more recently Hagenbach and Koessler (2022).

2 Model

Consider a communication game with two players: Sender (S, she) and Receiver (R,he). Play-

ers’ material payoffs depend on a state of the world and on Receiver’s action. The state of

the world is drawn from a set Ω×Θ. The set Ω represents the “payoff relevant” part of the

state.15 The set Θ = [0,1] is used to incorporate lotteries into Sender’s choice of messages, as

described below. The prior probability of the payoff relevant part of the state is denoted by

π ∈∆(Ω). Without loss of generality, we assume that the prior distribution over Θ is uniform.

These two prior distributions are stochastically independent.

Sender observes the state of the world and sends a message to Receiver. We denote the set

of possible messages by M , which for simplicity we assume to be an interval of real numbers.16

Upon observing the message sent by Sender, Receiver chooses an action from a compact set

A ⊂R.

Both Receiver and Sender are expected utility maximizers. The payoff for Receiver is given

by uR (a,ω), where a ∈ A is Receiver’s action and ω ∈Ω is the payoff relevant part of the state

of the world. For any belief about the payoff relevant state p ∈∆(Ω), denote the set of optimal

actions for Receiver by

A∗(p) = argmax
a∈A

Eω [uR (a,ω)] , (1)

where the expectation is computed according to the belief p. Sender’s material payoff is de-

noted uS(a,ω). If Sender deceives Receiver then she also incurs a cost of deception as de-

scribed below. To simplify notation, if Receiver randomizes over actions using a distribution

â ∈∆(A), then we interpret uS(â,ω) as the expected value Ea [uS(a,ω)] where the expectation

is computed according to the distribution â. The functions uR (a,ω) and uS(a,ω) are assumed

to be continuous.
13For a recent survey of the literature on psychological games see Battigalli and Dufwenberg (forthcoming).
14Loginova (2012) studies guilt aversion in the setup of Crawford and Sobel (1982) and characterizes the parti-

tional equilibria in the uniform-quadratic version of this model.
15We assume thatΩ is a compact metrizable space. We let∆(Ω) denote the set of all Borel probability measures

overΩ, endowed with the weak* topology.
16More generally, the set of messages can be given by any sufficiently rich measurable standard space, where

for richness it suffices to assume that the cardinality of M is at least the cardinality ofΩ×Θ.
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Receiver’s strategy is a measurable function ã : M → ∆(A). Sender’s strategy is a measur-

able function σ : Ω×Θ→ M .17 We refer to Sender’s strategy as her message function. Each

message that is sent under σ induces a posterior distribution over the payoff relevant states

ω ∈Ω, which we denote by pσ
m ∈∆(Ω).18

Fix a message function σ for Sender. According to the message function σ, Sender is

supposed to send message m = σ(ω,θ) in state (ω,θ). If, instead, Sender sends message

m′ 6= σ(ω,θ), then she is said to deceive Receiver because message m′ induces the “wrong”

posterior belief pσ
m′ instead of pσ

m . We assume that the cost to Sender from sending message

m′ instead of message m =σ(ω,θ) is

c
(
m′ |m,σ

)=α ·d
(
pσ

m′ , pσ
m

)
,

where d : ∆ (Ω) ×∆ (Ω) → R+ is a distance function between beliefs over Ω, and α ≥ 0 is a

parameter that scales the cost of deception.19 That is, the cost of sending a message m′ when

the state of the world is (ω,θ) is proportional to the distance between the posterior belief pσ
m

that should have been induced by the message m = σ(ω,θ) and the posterior belief that is

actually induced by the message m′, which is pσ
m′ .

Formally, an equilibrium of the communication game is a message function σ for Sender,

a response strategy ã for Receiver, and Receiver’s beliefs {pσ
m}m∈M such that:

1. For every message m that is sent by σ, Receiver’s posterior belief about the state pσ
m is

consistent with Sender’s message function.20

2. Receiver’s response to any message m is optimal given his belief.21

3. Sender’s message function is optimal given Receiver’s response strategy, the state, and

the cost of deception. That is, for any state (ω,θ) ∈Ω×Θ and message m =σ(ω,θ),

uS(ã(m),ω) ≥ uS(ã(m′),ω)− c
(
m′ |m,σ

)
, (2)

for every message m′ ∈ M .

17The incorporation of the set Θ into the state space ensures that the state space is sufficiently rich so that the
assumption that Sender employs a pure strategy involves no loss of generality.

18 More rigorously, since M is a standard space, a regular conditional probability distribution exists (Shiryaev
(1996), Theorem 4, p. 227). And, any two such distributions yield the same beliefs for all but a measure zero set
of messages. The posterior distribution pσ

m∈M mentioned above is one version of such a distribution.
19Formally, we assume that d(x, y) is a pseudometric. That is, it satisfies the following four properties: it is

nonnegative, symmetric, d(x, x) = 0 for every x (but, possibly, d(x, y) = 0 for some x 6= y), and it satisfies the
triangle inequality. Note that the triangle inequality is not satisfied by the quadratic lying cost in Kartik (2009) or
the Kullback-Leibler distance in Guo and Shmaya (2021).

20If Receiver observes a message that was not supposed to be sent by σ, then we assume that Receiver’s belief
coincides with his belief after some arbitrary message that is sent by Sender in equilibrium. The exact identity of
the on-path message in this case is not important. This assumption ensures that off-path messages never serve
as a tempting deviation for Sender.

21If Receiver has a unique best response, then he chooses it; otherwise, Receiver can mix among his best re-
sponses. Namely, the support of the distribution ã(m) is a subset of A∗(pσ

m).
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A message function σ is said to be credible if it is part of an equilibrium of the communi-

cation game. We refer to condition (2) as Sender’s credibility constraint.

Like other communication games, the communication game with costly deception stud-

ied here may also have multiple equilibria. One equilibrium that always exists is an “uninfor-

mative equilibrium,” in which Sender employs a trivial message function that sends the same

message in all states, Receiver’s belief coincides with the prior, and Receiver best responds to

this belief.

We focus on Sender-optimal equilibria of the communication game. A Sender-optimal

equilibrium is a solution to the following problem:

max〈σ,ã,{pσm }〉 Eω [Em [uS (ã(m),ω) | ω]] (SP)

where 〈σ, ã, {pσ
m}〉 is an equilibrium of the communication game. In problem (SP), the inner

expectation Em is evaluated according to the probability distribution over messages induced

byσ and θ ∈Θ, conditional on the stateω ∈Ω. The outer expectation Eω is evaluated according

to the prior probability distribution over states π.

On the equilibrium path, Sender’s message function σ determines Receiver’s beliefs fol-

lowing every message that is sent by Sender. Receiver’s beliefs determine Receiver’s response.

Notice that if for any belief Receiver has a unique best response, then the equilibrium is com-

pletely pinned down by Sender’s message function σ (provided that it satisfies the credibility

constraint, (2)). We analyze such an environment in Section 3 below.

Increasing the value of the deception cost parameter α relaxes Sender’s credibility con-

straint. This expands the set of possible equilibria. It immediately follows that:

Observation 1 Sender’s expected payoff in the solution to Problem (SP) is weakly increasing in

the cost parameter α.

It is noteworthy that Sender’s credibility is closely related to Sender’s ability to commit to

her message function. Specifically, credibility imposes an incentive compatibility constraint

on Sender. If the cost of deception c(·|·, ·) is infinite, then Sender has full-commitment power.

That is, she would never deviate from any message function she employs, and so this incentive

compatibility constraint is never binding. Otherwise, Sender may benefit from deviating from

certain messages. In this case, Sender has only partial-commitment power because she can

commit only to those message functions from which she would not want to deviate. Partial

commitment limits Sender’s ability to communicate. However, as famously shown by Craw-

ford and Sobel (1982), nontrivial communication is possible even when the cost of deception

is zero and Sender has no commitment power whatsoever.

Finally, as mentioned above, what distinguishes our approach is that in our model the cost

of deception is endogenous: it depends on the distance between beliefs induced by Sender’s

message function σ in equilibrium.
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3 Credibility with State-Dependent Utilities

We now turn to apply our notion of credibility to the payoff specification of Crawford and

Sobel (1982). We focus our attention on the classic uniform-quadratic version of the model.

Suppose thatΩ= [0,1], with a uniform prior probability distribution. The set of Receiver’s

actions is given by A = [0,1]. Sender’s and Receiver’s payoff functions are given by uS(a,ω) =
− (a − (ω+b))2 and uR (a,ω) = − (a −ω)2, respectively, for some b ≥ 0. It is easy to verify that

for any belief p Receiver’s optimal action is unique. As explained above, in this case Sender’s

message function pins down the equilibrium.

For simplicity, we restrict attention to the case where Sender chooses a measurable mes-

sage function σ :Ω→ M .22 This allows us to identify a message function with the partition it

induces over Ω. We also identify each message m with the set of states where message m is

sent, m ≡ {ω :σ(ω) = m}.

Denote the Lebesgue measure of message m by |m|. This is also the probability that mes-

sage m is sent in equilibrium. We denote the expected state conditional on message m (mean

of m) by µm and denote the infimum and supremum of m by m and m, respectively.23

We assume that the distance between any two beliefs is given by the difference between

their means. That is, the cost of sending message m′, in a state that belongs to message m, is

given by

c(m′|m,σ) =α · |µm −µm′ |.

Notice that when α= 0, our model coincides with that of Crawford and Sobel (1982).

Receiver observes the message sent by Sender and chooses an action a ∈ A. A simple cal-

culation shows that the action that maximizes Receiver’s payoff, following message m, is given

by the mean of m. I.e., (with a slight abuse of notation),

ã (m) =µm .

The expected payoff to Sender from a given partition of the state space Ω into messages is

given by the expected variance of the messages in this partition:

−Em [Var[ω|ω ∈ m]] (3)

up to a constant, where the expectation is taken according to the distribution over messages

induced by the partition.24

22The restriction to σ :Ω→ M instead of σ :Ω× [0,1] → M implies that we assume that Sender employs a pure
strategy in each state ω ∈Ω.

23The mean µm is computed with respect to the version of the posterior distribution pσ
m that we fixed in foot-

note 18.
24Given a message function σ, Sender’s payoff is given by −EmEω∈m

[
(ã(m)−ω−b)2], which is equal to

−EmEω∈m
[
(ã(m)−ω)2

]
up to a constant that is independent of σ. This last expression is equal to minus the

expected induced variance (3) and also (by definition) to Receiver’s expected payoff.

10



The credibility condition (2) implies that type ω ∈ m of Sender prefers sending message m

to sending any other message m′:

− (
ω−µm +b

)2 ≥−(
ω−µm′ +b

)2 −α ∣∣µm′ −µm
∣∣ . (4)

The left-hand side of (4) is type ω’s payoff from sending the message m, after which Receiver

takes the action µm . The right-hand side is type ω’s payoff from sending the message m′,
inducing Receiver’s action µm′ but incurring a deception cost of α

∣∣µm′ −µm
∣∣. A partition that

satisfies condition (4) is said to be a credible partition.

The objective of Sender is to find a credible partition that maximizes the objective function

(3). Since any two messages that induce an identical expectation can be merged into one mes-

sage without affecting credibility or the objective function’s value, there is no loss of generality

in assuming that each message in the partition chosen by Sender has a different mean.

The next lemma establishes a connection between the bias parameter b, the deception

cost parameter α, and the number of messages included in a credible partition:

Lemma 1 If α ≥ 2b then revelation of the state (the “truthful partition”) is credible.

If α < 2b then the number of messages in any credible partition is bounded from above by

1/(2b −α).

Thus, when α≥ 2b the solution to Sender’s problem is immediate. In this case the truthful

partition in which Sender reveals the state is credible, and the value of Sender’s objective func-

tion (3) is zero (and therefore Sender’s payoff is −b2). This implies that the truthful partition is

also optimal.

We henceforth restrict our attention to the case where α< 2b. Since, by Lemma 1, we may

assume that Sender employs a finite number of messages, no loss of optimality is implied by

assuming that all messages included in a credible partition have a positive measure. Given a

credible partition, we order the messages according to their conditional means, and denote

the k th message by mk and its mean by µk .

The credibility constraint (4) is equivalent to the following two constraints holding for ev-

ery k < J , where J denotes the number of messages in the partition:

µk +µk+1

2
−mk ≥ b − α

2
. ICup(k)

µk−1 +µk

2
−mk ≤ b + α

2
. ICdown(k)

Constraints ICup(k) and ICdown(k) ensure that when the state ω belongs to message mk

Sender prefers to send mk over sending messages with higher and lower means, respectively.25

25To see this, note that ICup(k) is tightest for messages with “adjacent means.” And if the constraint is satisfied
for ω= mk then it is satisfied for all ω ∈ m. On the other hand, if the constraint is not satisfied for ω= mk , then
there exists a state ω ∈ m for which it is violated. An analogous argument applies for the ICdown constraints.
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We proceed with the following definition:

Definition 1 A partition of Ω into convex messages (intervals) is said to be a convex partition.

Crawford and Sobel (1982) famously showed that any equilibrium of the cheap-talk model

induces a convex partition (in which the first element determines the structure of the entire

partition). When deception is costly this result no longer holds. Specifically,

(1) In Crawford and Sobel (1982) equilibrium partitions are monotone: if type ω is indifferent

between two messages m,m′ with µm < µm′ , then every type ω′ > ω strictly prefers m′ to m

and every type ω′′ < ω strictly prefers m to m′ (this is a consequence of the assumption that

Sender’s preferences satisfy the single-crossing property). By contrast, in our setting, because

the cost of switching to a different message is endogenous and depends on the type’s equilib-

rium message, it is possible to have two typesω<ω′ such thatω′ prefers m to m′ butω prefers

m′ to m. Moreover, any partition is credible for values of α that are sufficiently high.

(2) In Crawford and Sobel (1982) the first element of the partition determines the entire par-

tition structure. This is because the structure of the partition is determined by a set of types

who are indifferent between pairs of contiguous elements in the partition. By contrast, in our

case, fixing the first element of a partition (even a convex partition) does not pin down the

next elements of the partition. It is noteworthy that indifference conditions are not a neces-

sary feature of the partition. Namely, it is possible to have convex partitions in which no type

is indifferent between any pair of messages.

We proceed by showing that, although incentive compatibility does not imply convexity of

the induced partition, the optimal partition (i.e., the one that maximizes the objective func-

tion 3) is in fact convex. The main challenge is that, given a credible partition, it is difficult to

find a credible “global” improvement for it. And, “local” improvements may violate credibil-

ity. Our approach is to perform a sequence of local improvements that converge to a convex

partition while correcting for violations of credibility along the way.

The next definition formalizes a notion of a partially convex partition. It is instrumental in

describing the way in which a given partition is iteratively transformed through a sequence of

steps, parametrized by k, into a fully convex partition.

Definition 2 A partition ofΩ= [0,1] into messages is said to be “tightly packed with k messages”

on the interval [0, l ] if:

1. The union of the first k messages is equal to [0, l ];

2. Each message m1, . . . ,mk is convex; and

3. The incentive compatibility constraints ICup(1), . . . , ICup(k −1) are all binding.

12



The next lemma characterizes the maximal number of messages that can be tightly packed

on the interval [0, l ].

Lemma 2 For any l ∈ [0,1], the maximal number of messages that can be tightly packed on the

interval [0, l ] is given by I (l ) ≡
⌈√

1
4 + l

2b−α − 1
2

⌉
.26

As expected, ifα= 0 then I (1) is also the number of intervals in the most informative equi-

librium identified in the uniform quadratic example in Crawford and Sobel (1982).

The next proposition describes the optimal partition for Sender.

Proposition 1 The optimal partition of Ω = [0,1] consists of I (1) =
⌈√

1
4 + 1

2b−α − 1
2

⌉
tightly

packed messages onΩ.

To prove Proposition 1 we provide an iterative convergent algorithm that improves upon

any credible partition that does not partition the set Ω into I (1) tightly packed messages. We

now describe the algorithm and defer the detailed proof to the appendix.

Start with a credible partition that does not consist of I (1) tightly packed messages on Ω.

Let k be the highest index for which the messages m1, . . . ,mk−1 are tightly packed on the inter-

val [0, lk−1], where l j ≡
(|m1|+ · · ·+ ∣∣m j

∣∣) for any j > 0. Figure (1a) illustrates such a partition

(notice that messages mk ,mk+1,mk+2 are not convex). If no such collection of messages ex-

ists, then k = 1. If all the messages are already tightly packed, but the number of messages is

less than I (1), then k is equal to the number of messages in that partition.

Algorithm Convexify and repack

Require: Messages m1, ...,mk−1 are convex and tightly packed on the interval [0, lk−1]

Part I - Convexify message mk to the left

1: if message mk is not convex and adjacent to message mk−1 then
2: set mk = [

mk−1,mk−1 +|mk |
]
;

3: for every j > k such that m j < mk do:
4: replace every state ω ∈ m j by the state ω+|[ω,mk ]∩mk |;
5: end if

Part II - Repack

6: Repartition the interval [0, lk ] into I (lk ) tightly packed messages.

The algorithm described above “packs message mk ” and produces a new partition in

which I (lk ) messages are tightly packed on the interval [0, lk ], all the ICup constraints are sat-

isfied, and the modified partition yields a higher value of the objective function (3) to Sender,

compared to the original partition.

26The function dxe denotes the smallest integer greater than or equal to x.
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(k −1) t i g htl y packed messag es
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(a)

(b)

(c)

mk+1mk+2mk+1mk+2mk+1mkmk−1mk−2m1

mk+1mk+2mk+1mk+2mk+1

Figure 1: The Convexification of Message mk

The algorithm consists of two parts. In Part I message mk is “convexified to the left”

through a series of shifts of states across messages until message mk is convex and placed

immediately to the right of message mk−1. This change preserves the probability measure of

all the messages. At the end of Part I of the algorithm, the partition takes the form depicted

in Figure (1b). Intuitively, convexification to the left improves the value of the objective func-

tion (3) because it decreases the variance of some messages while not affecting the variance

of others and not affecting the probabilities with which messages are sent. However, notice

that after the change ICup(k −1) may no longer hold. This is because the convexification to

the left of mk decreases the mean µk , making it more attractive for higher types in mk−1 to

deviate and report mk . To restore incentive compatibility we proceed to the second part of

the algorithm.

Part II of the algorithm repartitions the interval [0, lk ] into I (lk ) tightly packed messages.

In the proof we show that this suffices to ensure that all the other ICup constraints are also

satisfied, and in particular ICup(I (lk )). The result of this part is depicted in Figure (1c). Note

that it could be the case that I (lk ) = k −1, so that repartitioning may in fact decrease the total

number of messages. Nevertheless, in the proof we show that the overall effect of convexifying

mk to the left and repartitioning the interval [0, lk ] improves the objective function’s value.

If the partition generated by the algorithm does not consist of I (1) messages that are tightly

packed on Ω, then we apply the algorithm again on that partition. By Lemma 1, the number

of messages in the original partition is bounded, therefore the process converges in a finite

number of iterations.

In the proof we also show that whenever all the ICup constraints are binding, which is the

case in any partition that consists of only tightly packed messages, then all the ICdown con-

straints are satisfied as well. Thus, the obtained partition, in which I (1) messages are tightly

packed onΩ is credible.

We conclude this section with a characterization of the messages that are induced by the

optimal partition.
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Corollary 1 The optimal partition consists of l (1) messages. Message mk , k ∈ {1, . . . , I (1)}, is

given by the interval [mk−1,mk ), where

mk = k

I (1)
+2

(
b − α

2

)
k(k − I (1)).

Notably, the value of mk that is described in the corollary is identical to the value charac-

terized by Crawford and Sobel (1982), except that in the expression here, Sender’s bias is offset

by the cost parameter, so that instead of b in Crawford and Sobel’s result, we have b−α/2. In-

deed, a higher value of the cost parameter α allows Sender to communicate her information

about the state of the world more effectively, which increases her expected payoff.

4 Credibility with Sender State-Independent Utility

In this section we incorporate our notion of credibility into a specification in which Sender’s

payoff is independent of the state. We impose the following three assumptions. First, we

assume that the payoff-relevant part of the state ω is a real-valued random variable with a

finite support. Next, we assume that the set of Receiver’s optimal actions depends only on the

expected state. That is, given a posterior belief p, the set A∗(p) defined in (1) depends only on

the mean of the distribution p, denoted by µp . Finally, we assume that Sender’s preferences

over Receiver’s actions do not depend on the state, and to simplify notation, we henceforth

omit the state from Sender’s material payoff function.27

To facilitate a comparison between our model and that of Kamenica and Gentzkow (2011)

(henceforth, KG) we start by writing Sender’s problem as a constrained maximization problem

over distributions of posterior beliefs.

We define the correspondence ûS : ∆(Ω) � R to be the indirect payoff of Sender. Thus,

ûS(p) is the (set of) payoff(s) that Sender can achieve by inducing a posterior belief p to which

Receiver best responds. For a belief p for which Receiver has a unique best response (i.e.,

A∗(p) is a singleton), we have (with a slight abuse of notation),

ûS(p) = uS(A∗(p)). (5)

Otherwise, if Receiver’s best response at p is not unique, then ûS(p) = {
uS(ã) : ã ∈∆(A∗(p))

}
.

The fact that uR and uS are continuous implies that ûS is a continuous correspondence.

Recall that every message m that is sent under a message function σ induces a posterior

belief pσ
m on the payoff-relevant part of the stateω. Accordingly, a message functionσ induces

27Kamenica and Gentzkow (2011) refer to this case as one in which the “sender’s payoff depends only on the
expected state.” This holds, for example, if uR (a,ω) = −(a −ω)2 and uS (a,ω) = a. It is easy to verify that in this
case, for any belief p, Receiver’s optimal action is given by µp . Thus, Sender’s payoff from inducing the belief p is
also µp . Other papers that employ state-independent Sender’s preferences in large parts of their analysis include
Guo and Shmaya (2021), Lipnowski and Ravid (2020), and Lipnowski, Ravid and Shishkin (2022).
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a distribution of posterior beliefs. We denote such a distribution of posterior beliefs by τ ∈
∆ (∆ (Ω)), and the probability that τ induces a posterior p ∈∆ (Ω) by τ

(
p

)
.

A distribution of posterior beliefs τ is said to be Bayes plausible if the expected posterior

belief it induces is equal to the prior. As famously shown by (KG) and Aumann and Maschler

(1995), a distribution of posterior beliefs τ can be induced by some message function σ if and

only if τ is Bayes plausible.

Thus, we can rewrite Sender’s problem (SP) as follows:

max
τ

max
{vp :vp∈ûS(p)}p∈Supp(τ)

∑
p∈Supp(τ)

vp ·τ(
p

)
(SP1)

s.t.
∑

p∈Supp(τ)
p ·τ(

p
)=π (Bayes Plausibility)

vp ≥ vp ′ −α ·d
(
p, p ′) , ∀p, p ′ ∈ Supp(τ) , (Credibility)

where Supp(τ) denotes the support of τ, and vp denotes Sender’s equilibrium payoff under

posterior belief p. When Receiver has a unique best response for any belief p, the indirect pay-

off ûS (·) is a function, and so the inner maximum operator is degenerate because vp = ûS(p)

for all p ∈ Supp(τ). In this case Sender’s payoffs are pinned down by the induced beliefs. When

Receiver has multiple best responses for some beliefs, the indirect payoff ûS (·) is a correspon-

dence. In this case, every payoff in ûS
(
p

)
can be obtained by some randomization performed

by Receiver via an appropriately chosen tie-breaking rule. The inner maximum operator cap-

tures the fact that the equilibrium that is best for Sender employs the Sender-optimal tie-

breaking rule.28

A distribution of posterior beliefs τ is said to be feasible if it is Bayes plausible and there

exists a set of Sender’s payoffs
{

vp : vp ∈ ûS
(
p

)}
p∈Supp(τ) such that credibility is satisfied. Note

that the “standard” problem of Bayesian persuasion involves maximizing the same objective

function, under the same Bayes plausibility constraint (and with a degenerate inner maximum

operator because in the Sender-optimal equilibrium, Receiver always breaks ties in favor of

Sender, ex-post). The new component that is introduced in our costly deception framework is

the credibility constraint.

We now proceed to characterize the solution to Sender’s problem. Given Sender’s indirect

payoff ûS , the convex hull of the graph of ûS , denoted by co(ûS), consists of all the convex

combinations of elements in the graph of ûS . That is,

co(ûS) =
{ (

p, y
)

: ∃p1, . . . , pk , pi ∈∆(Ω) for all i , and ∃λ1, . . . ,λk ≥ 0,
∑k

i=1λi = 1

such that p =∑k
i=1λi pi and y =∑k

i=1λi vpi where vpi ∈ ûS
(
pi

)
for all i

}
.

Given α≥ 0, we define the set coα (ûS) similarly to co(ûS), with one difference: it consists

28Note that as shown in Example 2 below, the tie-breaking rule employed by Receiver in Sender’s ex-ante op-
timal equilibrium does not necessarily select the Sender’s ex-post optimal action for every induced posterior
belief. See also Lipnowski and Ravid (2020) and Lipnowski (2020) for how tie-breaking that does not benefit the
sender ex-post, can be beneficial to the sender ex-ante.
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of all the convex combinations of elements in the graph of ûS that satisfy an additional set of

pairwise restrictions that are parametrized by α:

coα (ûS) =


(
p, y

)
: ∃p1, . . . , pk , pi ∈∆(Ω) for all i , and ∃λ1, . . . ,λk ≥ 0,

∑k
i=1λi = 1

such that p =∑k
i=1λi pi and y =∑k

i=1λi vpi where vpi ∈ ûS
(
pi

)
for all i

and
|vp j −vpi |
d(p j ,pi ) ≤α for every i , j

 .

with the convention that 0
0 = 0, so that if y ∈ ûS(p) then

(
p, y

) ∈ coα (ûS) for all α≥ 0.

If y ∈ ûS(p) then we say that p is the underlying posterior belief that induces y . The set

coα (ûS) contains all the pairs (p, y) for which the value y can be achieved by randomization

over payoffs {vpi } that are in the graph of ûS , provided that: (i) the weights of the random-

ization are such that the associated underlying posteriors average to p, and (ii) the random-

ization does not involve payoffs whose difference, divided by the distance between their un-

derlying posteriors, is “too large” (i.e., exceeds α), which would make deception attractive to

Sender.

Given α≥ 0, define the value of belief p as follows:29

V
(
p,α

)≡ max
{

y :
(
p, y

) ∈ coα (ûS)
}

.

Given a prior belief π and a payoff y ∈R, if (π, y) ∈ coα (ûS) then, by definition, there exists

a Bayes plausible distribution τ that is credible and induces the expected payoff y . And, con-

versely, given π, if y can be induced by some Bayes plausible and credible distribution τ then

(π, y) ∈ coα (ûS). The next result follows immediately.

Proposition 2 For every α≥ 0, the highest value that Sender can achieve in the problem (SP1)

is given by V (π,α).

Higher deception costs expand the domain of message functions that are deemed credible,

from which Sender can pick her preferred one. Indeed, as pointed out in Observation 1 in

Section 2, higher deception costs are always beneficial for Sender: formally, if α < α′ then

coα (ûS) ⊆ coα′ (ûS), which implies that V (π,α) ≤V (π,α′) for any prior π.

The structure of the set coα (ûS) depends on the distance function d . As before, we assume

that the distance between any two beliefs p, p ′ ∈∆(Ω) is measured by the difference between

the means induced by these distributions, i.e.,

d
(
p, p ′)= ∣∣µp −µp ′

∣∣ . (6)

Therefore, the cost of inducing the belief p ′, when the belief p should have been induced, is

given by α · ∣∣µp −µp ′
∣∣. Notice that if α is sufficiently large, then the credibility constraint is

non-binding and Sender’s problem becomes identical to that of the Bayesian persuader of KG

that has full commitment power.

29The fact that ûS is continuous implies the existence of a maximum.
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Figure 2: A Geometric Illustration of the Credibility Constraint

Under the specification of the distance function in Equation (6), the credibility constraint

in Sender’s problem (SP1) can be rewritten as follows:∣∣∣∣ vp − vp ′

µp −µp ′

∣∣∣∣≤α for all p, p ′ ∈ Supp(τ) (7)

where vp and vp ′ are Sender’s equilibrium payoffs under the posterior beliefs p and p ′, re-

spectively. It follows that for any two posterior beliefs that Sender induces in equilibrium, it

must be the case that the material gain from deviating from one posterior belief to the other,

divided by the distance between the means of the two posteriors, does not exceed α.

The following example provides a graphical illustration of the credibility constraint.

Example 1. Suppose that the payoff-relevant part of the state space is binary, with Ω = {0,1}.

In this case, a distribution p over Ω can be represented by the probability q that the state is

ω= 1, and the mean of p is given by µp = q .

Condition (7) has a geometric interpretation. To see it, consider the indirect payoff

function ûS that is depicted in Figure (2a). Suppose that the prior distribution is given by

some π ∈ [0,1]. In Bayesian persuasion with full commitment (α = ∞) Sender optimizes

by “splitting” π into two probabilities, q ′ and q ′′, that are such that λ · q ′ + (1−λ) · q ′′ = π

for some λ ∈ [0,1] (Bayes plausibility) so as to maximize the value of the objective function

λ · ûS
(
q ′)+ (1−λ) · ûS

(
q ′′). The credibility constraint (7) implies that the slope of the line that

connects the payoffs associated with these two probabilities, ûS
(
q ′) and ûS

(
q ′′), cannot ex-

ceed α.

Figure (2b) depicts Sender’s value V (π,α) (in blue) for a fixed deception cost α and differ-

ent values of π (the horizontal axis depicts the probability Pr(ω = 1) associated with each π).

Note that the graph of this function consists of parts that coincide with the graph of ûS (when

sending one uninformative message is optimal for Sender), and a line segment with slope α

that connects points on the graph of ûS (when it is optimal for Sender to send messages that
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induce the posterior beliefs q ′ and q ′′ with probabilities that depend on π).

Figure (2c) illustrates what happens to V (π,α) when α is varied between zero and infinity.

The uppermost dotted line in the figure corresponds to the graph of V when deception costs

are infinite, i.e., α = ∞ (or are just high enough to be non-binding). At the other extreme,

the flat dotted line corresponds to the case where deception is costless. In that case Sender

can only induce posterior beliefs that have identical indirect payoffs. This is the case that is

analyzed by Lipnowski and Ravid (2020). The dotted lines in between correspond to different

values of α, where higher lines correspond to higher values of α.

4.1 Continuity and Discontinuity of Sender’s Value Function

We now turn to discuss the continuity of the value function V (π,α). When V is discontin-

uous, Sender’s expected payoff is highly sensitive to small changes in the parameters of the

environment.

Our first observation is that Sender’s value function may be discontinuous in the prior π.

This is illustrated in the next example, which exploits a “jump” in Sender’s payoff ûS . Such

jumps are typical when the set of Receiver’s actions is finite.

Example 2. Suppose that there are two states,Ω= {0,1}, with prior probabilityπ on stateω= 1.

Receiver chooses one of two actions a ∈ {0,1} and his payoff function is given by uR (a,ω) =
−|a −ω|. Sender’s payoff function is given by uS(a,ω) = a. Thus, Sender’s indirect payoff ûS is

given by the bold line depicted in Figure (3a), where the values on the horizontal axis represent

the belief that ω= 1.

If π > 1
2 , then Sender-optimal equilibrium is uninformative. In this equilibrium, Sender

sends the same message in both states, and Receiver takes the action a = 1, which produces

a payoff 1 for Sender. Otherwise, if π≤ 1
2 , then in the optimal equilibrium Sender induces the

posterior beliefs 0 and 1
2 with probabilities 1− 2π and 2π, respectively. When his posterior

belief is 0, Receiver takes the action a = 0. When his posterior belief is 1
2 , Receiver is indif-

ferent. In this case, he takes the action a = 1 with probability min{α2 ,1} and the action a = 0

with the complementary probability. It is not difficult to verify that this is the Sender-optimal

equilibrium, and that Sender’s expected payoff in this case is given by

V (π,α) =
{
π ·min{α,2} if π< 1

2

1 if π≥ 1
2

.

This function is discontinuous in π at the point π= 1
2 for values of α< 2.
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Figure 3: α-dependent tie breaking

We thus obtain,

Observation 2 Sender’s value V (π,α) may be discontinuous in the prior π (when the value of

α is not too large).

Inspection of Sender’s value V (π,α) in Example 2 reveals that it is continuous in the cost

parameterα. This continuity is facilitated by a judicious use of the tie-breaking rule employed

by Receiver when the posterior belief on ω = 1 is 1
2 . Figure (3b) depicts the way in which

Sender’s equilibrium payoff from inducing posterior belief p = 1
2 varies continuously with α

in a way that preserves the continuity of V (π,α) in α for every π.

Continuity in α holds more generally. The main challenge in proving this result stems

from the fact that the correspondence that maps the parameters (π,α) into the set of feasible

distributions τ is not lower hemi-continuous in α (and therefore Berge’s maximum theorem

does not apply in our case). This implies that for a given distribution of posterior beliefs τ, a

small change in α may imply that there is no feasible distribution of posterior beliefs in the

neighborhood of τ. This is illustrated in the next example.

Example 3. Suppose that there are two states, Ω = {0,1}, with equal prior probabilities. As

before, we represent a distribution over Ω by the probability that the state is ω = 1. Assume

that the prior probability is given by π = 0.5, that α = 0.5, and that the function ûS is given

by the bold curved line depicted in Figure (4a). The optimal credible distribution of posterior

beliefs in this example is τ = (0.1,0.9; 1
2 , 1

2 ) and it gives Sender an expected value that is equal

to 0.4. To verify that credibility is satisfied, notice that the slope of the line that connects the

two points (0.1,0.2) and (0.9,0.6) (depicted in light blue) is 0.5, which is equal to α.

Suppose now thatα is slightly decreased. It is impossible to find two posterior beliefs close

to 0.1 and 0.9, respectively, that satisfy the credibility constraint (i.e., such that the line that
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Figure 4: Continuity of the Distribution of Posteriors

connects the two points associated with these posteriors has a slope less than or equal to the

new value of α, which is less than 0.5). Thus, the correspondence that maps the parameters

(π,α) into the set of feasible distributions is not lower hemi-continuous at (π,α) = (0.5,0.5).

To overcome this difficulty, we show that given π, even if a feasible distribution τ is such

that for some small change in α there is no feasible distribution that is close to τ, then there

must exist another feasible distribution τ̂, that achieves the same expected value for Sender

as τ, and τ̂ is such that for small changes in α there is a feasible distribution that is close to τ̂.

Example 3 (continued). As illustrated in Figure (4b), there exists a feasible distribution τ̂ =
(0.1,0.7; 1

3 , 2
3 ) that generates the same expected value for Sender of 0.4 as τ = (0.1,0.9; 1

2 , 1
2 ).

Note that for any parameters α′ that is close to α= 0.5, there exists a distribution of posterior

beliefs that is feasible with respect to (π= 0.5,α′) and is close to τ̂. For example, it is possible

to pick a binary distribution of posterior beliefs that is supported on 0.1 and 0.7−ε for some

small ε> 0 that depends on α′ and the curvature of the function ûS .

We thus obtain the following result.

Proposition 3 For any prior π, Sender’s value V (π,α) is continuous in α.

Two remarks are in order. First, the possible discontinuity of Sender’s value V (π,α) in

π stands in contrast to the continuity of the value function in standard Bayesian persuasion

(which is equivalent to the case where α=∞). This is because V (π,∞) is the concave closure

of the continuous correspondence ûS , and is therefore continuous.

Second, recall that the cost of deception parameter α captures Sender’s ability to com-

mit to her message function. Proposition 3 thus asserts that Sender’s value is continuous in

Sender’s commitment power. This result stands in contrast to the possible discontinuity of

Sender’s value in Sender’s credibility in the model of Lipnowski, Ravid and Shishkin (2022).30

30The difference in our results is due to the fact that in Lipnowski, Ravid and Shishkin’s model, Sender com-
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4.2 The Effect of the Cost of Deception

As the cost of deception α decreases, the credibility constraint becomes tighter, and so the

set of message functions that Sender can employ in equilibrium shrinks. Sender can restore

her credibility by either adopting a message function in which deception is more costly, or by

adopting a message function in which the gain from deception is smaller. In this subsection

we discuss these two alternatives.

The next example shows how Sender can increase the cost of deception in response to a

lower value of α by moving the means of the induced posterior beliefs farther apart.31

Example 4. Suppose that the payoff structure is the same as in Example 2 and that π= 1
4 . For

values ofα ∈ [1,2] consider the following equilibria: Sender induces posterior beliefs 0 and 1/α

that the state is ω = 1, with probabilities 1− α
4 and α

4 , respectively. Receiver takes the action

a = 0 when his posterior belief is 0, and the action a = 1 when his posterior belief is 1/α. It is

easy to verify that this equilibrium is Sender-optimal, and that asα decreases (but is still above

1), the posterior beliefs that support the optimal distribution τ move farther apart. See Figure

(5a). Intuitively, this movement increases the cost of deception and preserves the credibility

of Sender’s message function. This movement has the effect of “ungarbling” Sender’s commu-

nicated information. This ungarbling allows Receiver to make a more informed choice and so

increases Receiver’s ex-ante expected payoff.

The ungarbling of Sender’s communication in Example 4 is in the same spirit of what Lip-

nowski, Ravid and Shishkin (2022) refer to as “productive mistrust” (but for a different reason).

Namely, a decrease in Sender’s ability to commit gives rise to a more informative equilibrium,

which makes Receiver better off.

The other way in which Sender can respond to a decrease in the value ofα is by decreasing

the gain from deception. Sometimes, the only way to achieve this is by additional garbling of

Sender’s messages that moves the means of the induced posteriors closer together. Whether

or not garbling or ungarbling is better for Sender depends on the specific context. The next

proposition describes a sufficient condition that ensures that Sender responds to a lower value

of α by garbling her message to Receiver.

pensates for a weakening of (their notion of) credibility by sending a more informative signal. When credibility
falls below a certain threshold, this is no longer sustainable, leading to a discontinuous jump in Sender’s payoff.
By contrast, in our model, Receiver’s tie-breaking rule directly affects Sender’s gain from deception. When α de-
creases, Sender’s equilibrium gain from deception can be adjusted continuously, which preserves the continuity
of Sender’s payoff.

31Example 4 depicts a family of Sender-optimal equilibria (one for each value ofα ∈ [1,2]) in which the induced
posterior beliefs are 0 and 1/α. These are not the only Sender-optimal equilibria for the given payoff structure.
Indeed, Example 2 depicts another family of Sender-optimal equilibria in which the induced posterior beliefs
are 0 and 1/2 for these values of α. Notice however that for any such value of α, the former equilibrium Pareto
dominates the latter because it is strictly better for Receiver, and provides the same expected payoff to Sender.
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Proposition 4 Suppose that the state space Ω is binary, Receiver has a unique best response

for every belief, and Sender’s indirect payoff ûS is strictly convex.32 If α′ >α, then Sender’s opti-

mal distribution of posterior beliefs under α is a garbling of the optimal distribution under α′.
Consequently, lower deception costs are weakly harmful for both Sender and Receiver.

Figure (5b) depicts the case of a convex indirect payoff function ûS and illustrates that a

lowerα results in a distribution τ that is supported on posterior beliefs that are closer together.

Broadly speaking, a lower cost of deception implies that it is more difficult for Sender to

commit and so is accompanied by a higher level of mistrust. To appreciate the effect of mis-

trust it is useful to observe that Sender faces a tension between his incentive to reveal and

conceal information to Receiver. Receiver always prefers all information to be revealed. Ex-

ample 4 depicts a situation where Sender’s and Receiver’s interests are sufficiently opposed for

Receiver to benefit from Sender’s difficulty to commit. Proposition 4 depicts a situation where

Sender’s and Receiver’s interests are sufficiently aligned for both Sender and Receiver to suffer

from Sender’s difficulty to commit. In the former case, Sender does not disclose all the avail-

able information and, in order to preserve her credibility, she discloses more information; in

the latter case, Sender prefers to fully disclose all the available information and, in order to

preserve her credibility, she has to disclose less than she would want to if she was trusted

by Receiver. Notice however that in the two extreme cases in which Sender’s and Receiver’s

interests are perfectly aligned and diametrically opposed with respect to the revelation of in-

formation, a change in the value of α makes no difference. In the case of opposed interests,

silence on Sender’s part is always credible and optimal. And, when Sender and Receiver have

perfectly aligned interests, Sender would not want to mislead Receiver anyway.

32These conditions imply that ûS is a strictly convex function.
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5 Discussion

5.1 Tie-Breaking by Receiver

Our focus in this paper is on Sender’s (ex-ante) optimal equilibrium. It is noteworthy that in

order to support this equilibrium, Receiver may sometimes have to break ties in a way that

“helps” Sender to sustain her credibility, but is suboptimal for Sender ex-post. This is illus-

trated in Example 2, where for values of π < 1
2 and α < 1, when his posterior belief on ω = 1

is 1
2 , Receiver randomizes between the two actions in a way that allows Sender to credibly

communicate information. This is sub-optimal for Sender ex-post because Sender prefers ac-

tion a = 1 to a = 0. Furthermore, in the Sender-optimal equilibrium, Receiver may need to

randomize differently for different posterior beliefs.

The fact that Receiver’s action is not optimal for Sender ex-post, may open the door for

Sender to ask an indifferent Receiver to change his action. This raises the question of what

would be the effect on equilibrium if, when indifferent, Receiver always chose the action that

is optimal for Sender ex-post.

Analysis of this case reveals two notable differences from the analysis so far. First, Sender’s

value in this case may be discontinuous in α. For instance, in the setup of Example 2, sup-

pose that the prior belief is π= 1
4 and that Receiver always chooses the action a = 1 when his

posterior belief is 1
2 . Then, Sender’s value is discontinuous in α at α = 1. Second, in some

settings the Sender’s optimal value may be approximated arbitrarily closely, but not exactly

achieved.33 These two observations would hold for any other tie-breaking rule in which Re-

ceiver randomizes with probabilities that are independent of the value of α.

5.2 An Upper Bound on the Number of Messages

How many messages does Sender need to employ in equilibrium? Suppose that the number

of states in Ω is finite. Previous work (see, e.g., Le Treust and Tomala, 2019, Doval and Skreta,

2018, and Salamanca, 2021) has shown that, in general, the number of messages optimally

employed by the sender in constrained communication problems is possibly larger than the

number of states and is increasing in the number of constraints. In our setting, the number of

constraints is endogenous: if the number of messages sent by Sender is K , then the number of

(credibility) constraints is K (K −1).

Hence, it is not a priori clear what is the number of messages that are required to support

a Sender-optimal equilibrium. On the one hand, employing a small number of messages de-

creases the number of credibility constraints. On the other hand, it may be the case that the

33For instance, suppose that in Example 2 Receiver has an additional action a = 2 with a payoff −|0.5−ω|−0.5
that gives Sender a payoff of 2. Receiver’s action in this case is identical to that in Example 2, except that when
his belief that ω= 1 is 0.5 he chooses the action a = 2. In this case, for α= 2 Sender’s value can be approximated
but not achieved.
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way to achieve the Sender-optimal payoff is to employ a large number of messages such that

the gain from deviating from one message to another is small.

The next proposition shows that no loss of optimality is implied by restricting attention to

equilibria that employ no more messages than the number of states |Ω|.34,

Proposition 5 For any equilibrium that employs more than |Ω| messages, there exists an equi-

librium that generates a weakly higher ex-ante expected payoff to Sender and employs no more

than |Ω| messages.

The proof of the proposition starts with the well-known observation that, by

Carathéodory’s theorem (Rockafellar, 1997), for any message function there exists another

(possibly non-credible) message function that generates an identical ex-ante expected payoff

with no more than |Ω| + 1 messages.35 The challenge is to show that given a credible mes-

sage function that employs more messages, it is possible to reduce the number of messages

in such a way that preserves credibility. To prove this, we show that in the process of reducing

the number of messages, it is never the case that a message that was not sent in state ω under

the original message function is sent in ω under the message function with the smaller num-

ber of messages. Finally, we rely on the observation that the expected payoff that is generated

by an equilibrium that employs |Ω|+1 messages can be written as an average of the expected

payoffs generated by two equilibria that each employs no more than |Ω| messages.

We thus obtain,

Corollary 2 There exists a Sender-optimal equilibrium that employs no more than |Ω| mes-

sages.

6 Conclusion

Credible communication establishes trust, which is crucial for social interaction and eco-

nomic activity. In this paper we propose a theoretical foundation for understanding the link

between deception and credible communication. We introduce the possibility of costly de-

ception into communication games. The novelty in our approach is that deception costs de-

pend on the players’ beliefs and are therefore endogenous. We show how costly deception

affects Sender’s ability to commit to her strategy in two classical environments. We illustrate

how imperfect commitment is mitigated by the fact that deception is costly. The model is

tractable and can be applied to many economic environments. These environments can be

either ones in which the informed party incurs a direct cost for being dishonest (e.g., because

34Bester and Strausz (2001) and Heumann (2020) obtain a similar result for the case with no commitment. In
our model, this is the case of α= 0.

35The use of Carathéodory’s theorem in such problems is standard (see, e.g., Bester and Strausz, 2001, and
Kamenica and Gentzkow, 2011). In our case, the credibility constraint implies that a subtler argument is required.
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of ethical concerns, as in a doctor-patient or familial relationships) or ones in which the cost

is indirect, and is due to reputational concerns in a reduced form of a dynamic interaction

model (e.g., as in the case of central bankers, politicians, and the media). Pursuing these di-

rections for future research would hopefully enhance the understanding of the determinants

of credible communication and its effect on social trust.
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Appendix: Proofs

Proof of Lemma 1

Suppose that α < 2b. Fix a credible partition. Recall that Receiver’s optimal response to any

message m is given by µm . For any two messages m and m′ such that µm′ >µm , condition (4)

can be rewritten as:
µm +µm′

2
−ω≥ b − α

2
(8)

for all ω ∈ m. Suppose that there are N or more messages. There exist two messages m and

m′ such that µm′ −µm < 1
N . It follows that when applied to messages m and m′, the left-hand

side of (8) is smaller than µm −ω+ 1
2N . There exists a state ω ∈ m that is such that ω ≥ µm .

Therefore, for N > 1
2b−α inequality (8) is violated. It follows that the number of messages is no

larger than 1
2b−α .

Suppose now that α≥ 2b. If Sender reveals the state then each message m = {ωm} is a sin-

gleton state and µm =ωm . Inspection of the constraint (4) reveals that it is satisfied. Moreover,

since the variance of each message is zero, the objective function given by Equation (3) is also

equal to zero, which is the highest possible value it can attain.

Proof of Lemma 2

Suppose that mk and mk+1 are two adjacent convex messages. Convexity implies that µk =
mk+mk

2 and µk+1 = mk+1+mk+1

2 . The incentive constraint ICup(k) is then given by:

mk +mk

2
+ mk+1 +mk+1

2
−2mk ≥ 2b −α.

Convexity also implies that mk −mk = |mk | and mk+1−mk+1 = |mk+1|. Since the messages are

adjacent, it follows that mk+1 = mk . We can therefore equivalently write ICup(k) as follows:

|mk+1|− |mk | ≥ 4b −2α. (9)

Equation (9) is a necessary and sufficient condition for ICup(k) when messages are convex. If,

in addition, ICup(k) is binding then Equation (9) holds in equality.

Set x = |m1| > 0. Then, the fact that the messages are tightly packed implies that |m2| =
x +4b −2α, |m3| = x +8b −4α, . . . , |mk | = x + (k −1)(4b −2α), and so on. Thus,

|m1|+ · · ·+ |mk | = k(k −1)(2b −α)+kx. (10)

Since x can be set arbitrarily small, the maximal number of messages that can be tightly

packed on the interval [0, l ] is given by

I (l ) =
ÈÌÌÌ

√
1

4
+ l

2b −α − 1

2

ÉÍÍÍ .
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Figure 6: Step1, Case I

Proof of Proposition 1

Consider a credible partition that does not consist of I (1) tightly packed messages onΩ. Sup-

pose that the number of messages in this partition is J . The algorithm described in the text

“packs message mk ” and produces a new partition in which I (lk ) messages are tightly packed

on the interval [0, lk ]. We show that in each iteration of the algorithm the value of the objective

function improves and all ICup constraints are preserved.

Our proof proceeds in two steps. In step 1, we show that performing Part I of the algorithm

improves the value of the objective function. Furthermore, after Part I is performed all but

perhaps one of the ICup constraints are satisfied. If this one constraint is indeed violated, we

perform a modification of the partition after which: (i) all the ICup constraints are satisfied,

and (ii) the objective function’s value is higher than that of the original partition (before the

execution of Part I of the algorithm).

In step 2, we show that the partition produced in step 1 is in fact suboptimal relative to

a partition in which messages are tightly “repacked” in a maximal manner, and in which all

ICup constraints are satisfied. Steps 1 and 2 can be repeated until the resulting partition is

one that consists of l (1) tightly packed messages onΩ.

To conclude the proof, we show that this final partition satisfies all the ICdown constraints,

and is therefore credible.

Step 1: Fix all ICup constraints and improve the objective function’s value

Part I of the algorithm “convexifies” message mk to the left. The outcome of this process is

illustrated in Figure (6a). We refer to the partition before the convexification as the “original

partition” and to the partition after the convexification as the “convexified partition.” Since in

the convexified partition the variance of each message m j is weakly less than the variance of

m j under the original partition, it follows that the convexified partition attains a higher value

for the objective function (3).

Notice that the convexification (as described in the algorithm in the text) shifts probabil-

ity mass of message mk towards lower states (“to the left”) and shifts probability masses of

messages m j with j > k towards higher states (“to the right”). Define φ j to be the increase

in the mean of message m j as a consequence of the shift, multiplied by the probability of the

message |m j | (i.e., the increase in the mean of message m j is equal to
φ j

|m j | ). Define Φk to be
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the decrease in the mean of message mk as a consequence of the shift, multiplied by |mk | (i.e.,

the decrease in the mean of message mk is equal to Φk
|mk | ). By the Law of Iterated Expectation,

Φk = ∑
j>k φ j . Finally, denote by L the decrease in the value of mk as a consequence of the

shift (thus, L is equal to the difference between the measures [mk−1,mk ] and |mk |). Because

the decrease in the value of mk is at least as large as the decrease in the mean of message mk ,

it follows that:
Φk

|mk |
≤ L. (11)

In the convexified partition, the constraints ICup(1), . . . , ICup(k −2) are satisfied because

the convexification does not affect them. The constraints ICup(k +1), . . . , ICup(J −1) are also

satisfied. To see this, note that credibility of the original partition implies that µ j ≤ m j ≤
µ j+1 ≤ m j+1 for all j ≤ J − 1 and therefore mk+1, . . . ,m J are all larger than mk . Hence, the

supremum of each message m j with j > k is unchanged between the original and the convex-

ified partition, i.e., the values of mk+1, . . . ,m J are unaffected by the convexification. Moreover,

the the values of µk+1, . . . ,µJ are all weakly greater in the convexified partition relative to the

original one. Therefore, the fact that ICup(k + 1), . . ., ICup(J − 1) are satisfied in the original

partition implies that they are satisfied in the convexified partition as well.

In the convexified partition, the constraint ICup(k) is satisfied with a slack. To see this,

notice first that the convexification weakly increases µk+1 relative to its value in the original

partition. Next, note that although the convexification decreases µk by Φk
|mk | relative to the

original partition, it also decreases mk by L. By (11) it follows that the sum µk +µk+1 decreases

by no more than Φk
|mk | while mk decreases by at least Φk

|mk | . Thus, the fact that ICup(k) is satisfied

in the original partition implies that it is satisfied also in the convexified partition. In fact, the

convexification creates a slack of at least Φk
2|mk | in the ICup(k) constraint. We make use of this

observation below.

If ICup(k−1) is satisfied in the convexified partition, then all ICup constraints are satisfied.

In this case, jump directly to step 2 below. Otherwise, we distinguish between two cases.

Case I. Suppose that |mk−1| ≤ 2Φk
|mk | . Merge message mk−1 and message mk (which is now a

convex message) into a new message called mnew
k with mean µnew

k . For ease of notation we

relabel all the other messages from m j as mnew
j . We refer to the resulting partition as the

“merged partition.” This partition, which is illustrated in Figure (6b), is composed of the mes-
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sages mnew
1 , . . . ,mnew

k−2 ,mnew
k ,mnew

k+1 , . . . ,mnew
J . Notice that:

µnew
k = µk −

Φk

|mk |
− |mk−1|

2
(12)

µnew
k = µk−1 +

|mk |
2

(13)

µnew
j = µ j +

φ j∣∣m j
∣∣ for all j ≥ k +1 (14)

µnew
j = µ j for all j ≤ k −2 (15)

mnew
k = mk −L, (16)

where µ j is the mean of message m j in the original partition, for all j . To see why Equation

(12) holds, notice that µnew
k is equal to the original value of µk , minus Φk

|mk | (due to the con-

vexification of mk ), minus |mk−1|
2 (due to the merging of mk with mk−1). Equation (13) holds

because the mean of the merged message mnew
k is larger than that of the original mk−1 by |mk |

2 .

Equations (14), (15), and (16) are all direct implications of the convexification of mk .

In the merged partition, all the ICup constraints are satisfied:

1. ICup((k − 2)new ) is satisfied because µnew
k > µk−1, whereas µnew

k−2 = µk−2 and mnew
k−2 =

mk−2. Therefore, the fact that ICup(k − 2) was satisfied in the original partition, i.e.
µk−2+µk−1

2 −mk−2 ≥ b − α
2 , implies that

µnew
k−2 +µnew

k
2 −mnew

k−2 ≥ b − α
2 .

2. ICup(knew ) is satisfied because, by Equation (12) and since |mk−1| ≤ 2Φk
|mk | , we have that

µnew
k ≥ µk − 2Φk

|mk | . Thus, the facts that ICup(k) was satisfied in the original partition, i.e.,
µk+µk+1

2 −mk ≥ b − α
2 , along with Equations (11), (14), and (16), imply that

µnew
k +µnew

k+1
2 −

mnew
k ≥ b − α

2 .

3. All the other ICup constraints are unaffected by the merge. The fact that they are satis-

fied in the convexified partition implies that they are satisfied in the merged partition.

We now show that the merged partition yields a higher value of the objective function (3)

compared to the original partition. Algebraic manipulation shows that the objective function

(3) is equal to the weighted sum of square means of the partition elements

J∑
j=1

|m j |
(
µ j

)2 (17)

up to a constant. We therefore have to show that:∑
j≤k−2

|m j |(µnew
j )2 +|mnew

k |(µnew
k

)2 + ∑
j≥k+1

|m j |(µnew
j )2

≥ ∑
j≤k−2

|m j |µ2
j +|mk−1|µ2

k−1 +|mk |µ2
k +

∑
j≥k+1

|m j |µ2
j
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where the left-hand side of the inequality is the value of (17) computed for the merged par-

tition, and the right-hand side is the value of (17) computed for the original partition. Using

Equations (14) and (15) above, we rewrite the inequality as follows:

2
∑

j≥k+1
µ jφ j +

∑
j≥k+1

|m j |
(
φ j∣∣m j

∣∣
)2

≥ |mk−1|µ2
k−1 +|mk |µ2

k −|mnew
k |(µnew

k

)2 .

Since
∑

j≥k+1 |m j |
(
φi

|m j |
)2 ≥ 0 and µ j >µk+1 for any j > k +1, it suffices to show that:

2Φkµk+1 ≥ |mk−1|µ2
k−1 +|mk |µ2

k −|mnew
k |(µnew

k

)2 .

Substituting |mnew
k | = |mk |+ |mk−1| and rearranging yields:

2Φkµk+1 ≥−|mk−1| (µnew
k −µk−1)(µk−1 +µnew

k )+|mk | (µk −µnew
k )(µk +µnew

k ).

Using Equations (12) and (13), we rewrite the inequality as follows:

2
(
µk+1 −µk

)
Φk ≥ 1

2
|mk | |mk−1|

(
Φk

|mk |
+ |mk−1|

2
+ |mk |

2

)
−Φk

(
Φk

|mk |
+ |mk−1|

2

)
. (18)

Finally, we use the fact that ICup(k) is satisfied in the original partition to find a lower

bound on µk+1 −µk . To do that, we write ICup(k) equivalently as follows:

µk+1 −µk ≥ 2
((

mnew
k −µnew

k

)− (
µk −µnew

k

)+ (
mk −mnew

k

))+2
(
b − α

2

)
.

The fact that mnew
k is a convex message with measure |mk−1|+|mk | implies that mnew

k −µnew
k =

1
2 (|mk−1|+ |mk |). By Equations (11 ), (12), and (16) we have that

µk+1 −µk ≥ |mk |+2
(
b − α

2

)
. (19)

By plugging inequality (19) into inequality (18) and simplifying we only need to show that:

|mk |2 |mk−1|2 +|mk |3 |mk−1|−8Φk |mk |2 −4Φ2
k −16Φk |mk |

(
b − α

2

)
≤ 0. (20)

Finally, to see why this last inequality is satisfied, notice that the left-hand side of the in-

equality is negative when |mk−1| = 0. A simple computation shows that it is negative also for

|mk−1| = 2Φk
|mk | . Because the left-hand side of the inequality is convex in |mk−1|, it is negative for

any |mk−1| ∈
[

0, 2Φk
|mk |

]
.

Case II. Suppose that |mk−1| > 2Φk
|mk | . Find the index 0 ≤ j < k−1 for which

∣∣m j
∣∣< 2Φk

|mk | ≤
∣∣m j+1

∣∣.
For ease of notation assume that m0 =; and |m0| = 0. Repartition the union of the two mes-

sages m j ∪m j+1 into two new messages: an interval mnew
j =

[
m j−1,m j+1 − 2Φk

|mk |
]

with mea-

sure |mnew
j | = ∣∣m j

∣∣+ ∣∣m j+1
∣∣− 2Φk

|mk | and an interval mnew
j =

[
m j+1 − 2Φk

|mk | ,m j+1

]
with measure

|mnew
j+1 | = 2Φk

|mk | . Relabel all the other messages from m j as mnew
j , as illustrated in Figure (7b).

This modified partition weakly improves the value of the objective function, compared to the
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(c) mnew
kmnew

k−1mnew
j+2mnew

jmnew
1 mnew

k−2

2Φk /|mk |

2Φk /|mk |

Figure 7: Step 1, Case II

original partition, because: (i) the convexification of mk weakly decreases the variance of all

messages, and (ii) the repartitioning of m j ∪m j+1 into mnew
j and mnew

j+1 makes the two mes-

sages “more equal” in their measures compared to m j and m j+1 in the original partition, and

so decreases the weighted variance further.

After repartitioning, the constraints ICup( j new ) and ICup((k−1)new ) are perhaps violated.

To fix this, we eliminate message mnew
j+1 whose measure is exactly equal to 2Φk

|mk | , as follows: we

“shift” to the left messages mnew
j+2 , . . . ,mnew

k−1 by length 2Φk
|mk | , and add 2Φk

|mk | to message mnew
k from

the left, as illustrated in Figure (7c).36

After this modification, all the ICup constraints are satisfied:

1. The constraint ICup(
(

j −1
)new ) is satisfied becauseµnew

j ≥µ j , whereasµnew
j−1 =µ j−1 and

mnew
j−1 = m j−1. Thus, the fact that ICup

(
j −1

)
is satisfied in the original partition implies

that ICup(
(

j −1
)new ) is satisfied in the modified partition.

2. The constraint ICup
(

j new
)

is satisfied. To see this note first that, by construction,

|mnew
j | < ∣∣m j+1

∣∣ and |m j+2| = |mnew
j+2 |. Next, notice that credibility of the original par-

tition, and the fact that m j+1 and m j+2 are two convex and adjacent messages, imply,

by Equation (9), that
∣∣m j+1

∣∣≤ ∣∣m j+2
∣∣−4

(
b − α

2

)
. Therefore,

∣∣∣mnew
j

∣∣∣≤ ∣∣∣mnew
j+2

∣∣∣−4
(
b − α

2

)
,

which guarantees by Equation (9) that ICup
(

j new
)

is satisfied.

3. The constraint ICup
(
(k −1)new )

is satisfied. To see this, note that µnew
k = µk − Φk

|mk | −
1
2 · 2Φk

|mk | (the convexification of mk to the left decreases µk by Φk
|mk | , and the expansion

from the left further decreases the mean by 1
2 · 2Φk

|mk | ). Furthermore, µnew
k−1 = µk−1 − 2Φk

|mk |
and mnew

k−1 = mk−1 − 2Φk
|mk | due to the shift of messages to the left. Taken together, the last

three observations imply that since ICup(k −1) is satisfied in the original partition, then

ICup((k −1)new ) is satisfied in the merged partition.

36We say that a convex message (interval) m is shifted to the left by x if mnew := m−x and mnew := m−x where
mnew denotes message m after the shift.
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4. The constraint ICup(knew ) is satisfied. This is because the convexification of mk to the

left implies that µnew
k+1 ≥ µk+1. Shifting the messages to the left implies that µnew

k = µk −
Φk
|mk |−

1
2 · 2Φk

|mk | (as explained above) and mnew
k = mk−L. Taken together, these observations

and equation (11) imply that since ICup(k) was satisfied in the original partition, then

ICup(knew ) is satisfied in the new partition.

5. All the other ICup constraints are unaffected by the shift.

The modification improves the value of the objective function compared to the original

partition. To see this, recall first that the partition illustrated in Figure (7a), which is the out-

come of convexifying message mk to the left (performed in Part I of the algorithm), improves

the value of the objective function relative to the original partition. Next, as explained above,

the partition depicted in Figure (7b) improves on the partition depicted in Figure (7a). Finally,

inspection of Figure (7c) reveals that it consists of messages with the same lengths as the par-

tition in depicted in Figure (7b), except for message mnew
k in Figure (7c), which can be viewed

as a union between messages mnew
k and mnew

j+1 in Figure 7(b). It is useful to perform this merge

in two steps: first, shift message mnew
j+1 to the right so that it lies between messages mnew

k−1 and

mnew
k in Figure (7b); second, merge messages mnew

j+1 and mnew
k as illustrated in Figure (7c).

Because the measure of message mnew
j+1 is exactly 2Φk

|mk | , the argument used in Case I above can

be applied here, where mnew
j+1 takes the place of message mk−1 in the argument presented in

Case I.

Step 2: Show that Part II of the algorithm improves the objective function’s value further

Part I of the algorithm, followed by the modifications described above (according to Case I or

Case II), produces a partition with convex messages on the interval [0, lk ] that satisfies all the

ICup constraints and improves upon the value of the objective function compared to the orig-

inal partition. The next lemma asserts that executing Part II of the algorithm on this partition

preserves all the ICup constraints and further improves the value of the objective function.

Lemma A.1 Let P be a partition that satisfies all the ICup constraints with Ĵ convex messages

on the interval [0, l Ĵ ]. Then, tightly packing the messages on the interval [0, l Ĵ ] in a maximal

manner preserves all the ICup constraints and improves the value of the objective function.

Finally, to complete the proof of the proposition, notice that when I (1) messages are max-

imally tightly packed on Ω then all the ICup constraints are binding (by definition). In this

case, all the ICdown constraints are satisfied as well. To see this, fix j and notice that

µ j−1 +µ j

2
−m j =

µ j−1 +µ j

2
−m j−1 = b − α

2
,

where the first equality is by definition and the second equality follows from the fact that the

ICup( j −1) constraint is binding. It follows that
µ j−1+µ j

2 −m j ≤ b+ α
2 . This completes the proof

of the proposition.
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Proof of Lemma A.1

Suppose that messages 1 through Ĵ are not tightly packed. It follows that the ICup( j ) con-

straint is not binding for some message m j , j < Ĵ . Redefine messages m j and m j+1 as

mnew
j = [m j ,m j +ε] and mnew

j+1 = [m j+1+ε,m j+1] for ε> 0 sufficiently small so that the ICup( j )

constraint is satisfied for the new messages. Observe that this change weakly relaxes all the

other ICup constraints. This change improves the value of he objective function (3) because

it makes the probability masses of messages mnew
j and mnew

j+1 closer together relative to mes-

sages m j and m j+1, which decreases the weighted variance. This implies that tightly packing

the Ĵ messages on the interval [0, l Ĵ ] satisfies all the ICup constraints (by definition) and im-

proves the value of the objective function.

If messages 1 through Ĵ are tightly packed, but not maximally tightly packed, then max-

imally tightly packing messages on the interval [0, l Ĵ ] satisfies all the ICup constraints and

improves the value of the objective function.

To see this, suppose that P is a partition that satisfies all the ICup constraints with k mes-

sages that are tightly packed on the interval [0, l ], where l ≡ lk . Suppose that it is possible to

tightly pack k +1 messages on the interval [0, l ]. Let Q be a partition that tightly packs k +1

messages on the interval [0, l ] and coincides with P on Ω \ [0, l ]. Denote the messages of P

and Q restricted to the interval [0, l ] by mP
1 , . . . ,mP

k and mQ
1 , . . . ,mQ

k+1, respectively. Denote the

value of the objective function (3) restricted to the interval [0, l ] that is induced by these two

partitions by V (P ) =∑k
i=1 |mP

i |Var(mP
i ) and V (Q) =∑k+1

i=1 |mQ
i |Var(mQ

i ), respectively.

All the ICup(i ), 1 ≤ i ≤ k, constraints are binding in both P and Q. By equation (9), which

in this case holds as an equality, it follows that |mP
i | > |mQ

i+1| > |mQ
1 | for all 1 ≤ i ≤ k. It follows

that

V (P ) =
k∑

i=1
|mQ

i+1|Var(mP
i )+

k∑
i=1

(
|mP

i |− |mQ
i+1|

)
Var(mP

i )

≥
k∑

i=1
|mQ

i+1|Var(mQ
i+1)+

k∑
i=1

(
|mP

i |− |mQ
i+1|

)
Var(mQ

1 )

=
k+1∑
i=2

|mQ
i |Var(mQ

i )+
(

l −
k+1∑
i=2

|mQ
i |

)
Var(mQ

1 )

=V (Q)

where the inequality follows from the fact that the variance of an interval increases in its

length.

Finally, the fact that the ICup(k) constraint is satisfied in partition P and the fact that

µ
Q
k+1 > µP

k imply that the ICup(k + 1) constraint is satisfied in partition Q. Hence, partition

Q satisfies all the ICup constraints.
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Proof of Proposition 3

Fix a belief p∗ and a cost parameter α∗ ≥ 0. We show that for any α close to α∗, V (p∗,α) is

close to V (p∗,α∗).

Denote the set of posterior beliefs induced by a Sender-optimal equilibrium (under the

prior belief p∗ and the cost parameterα∗) by P and denote the induced distribution over P by

τ. For any two posterior beliefs p, p ′ ∈ P , denote the weighted mean of p and p ′ by

µp,p ′ ≡ τ(p)

τ(p)+τ(p ′)
·µp + τ(p ′)

τ(p)+τ(p ′)
·µp ′ .

Define

g (µp ,µp ′) ≡ ûS(µp ′)− ûS(µp )

µp ′ −µp
.

In the definition of g (µp ,µp ′), as well as below, whenever a specific equilibrium is consid-

ered, ûS(µp ) is Sender’s payoff under posterior belief p, under this equilibrium. The value of

g (µp ,µp ′) can be interpreted as the slope of the line that connects the point (µp , ûS(µp )) with

the point (µp ′ , ûS(µp ′)) on the mean/payoff plane. In Figure (8a) this is the slope of the dashed

line. Notice that, given three posterior beliefs p, p ′, and p ′′ that are such that µp < µp ′ < µp ′′ ,

if g (µp ,µp ′) = g (µp ′ ,µp ′′) =α∗ then g (µp ,µp ′′) =α∗. In this case, the three points (µp , ûS(µp )),

(µp ′ , ûS(µp ′)), and (µp ′′ , ûS(µp ′′)) are all on the same line in the mean/payoff plane.

Credibility of the optimal message function implies that |g (µp ,µp ′)| ≤ α∗ for any pair of

posterior beliefs p, p ′ ∈ P . If the inequality is strict for all such pairs (i.e., the credibility con-

straint is not binding), then clearly the same value of V can be achieved by employing the

same distribution of posteriors τ over the set of posterior beliefs P for anyα that is sufficiently

close to α∗.

We therefore assume that there is at least one pair of posterior beliefs p, p ′ ∈ P for which

g (µp ,µp ′) = α∗ (the case of −g (µp ,µp ′) = α∗ is analogous and is therefore omitted). The next

two lemmas are useful for the analysis that follows.

Lemma A.2 Let p, p ′ ∈ P be such that µp < µp ′ . For any two posterior means µx ,µy such that

µp ≤ µx < µp,p ′ < µy ≤ µp ′ there exists a set of posterior beliefs P̂ = P \ {p, p ′}∪ {x, y}, where x

and y are posterior beliefs that induce the means µx and µy , respectively, and a Bayes’ plausible

distribution τ̂ over P̂ such that

τ̂(x) = (τ(p)+τ(p ′)) · µy −µp,p ′

µy −µx

τ̂(y) = (τ(p)+τ(p ′)) · µp,p ′ −µx

µy −µx

and τ̂= τ otherwise. We refer to the substitution of p, p ′ by x, y as the replacement of p and p ′

by x and y. Furthermore, if g (µp ,µx) = g (µx ,µy ) = g (µy ,µp ′), then the value of V induced by τ
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Figure 8: Modifications of the induced posterior beliefs

is the same as the value of V induced by τ̂.37

Lemma A.3 Suppose that p, p ′, p ′′ ∈ P are three posterior beliefs with means µp < µp ′ < µp ′′

such that g (µp ,µp ′) = g (µp ′ ,µp ′′) =α∗. Then, it is possible to eliminate either p, or p ′′, or both,

from P, and adjust the distribution over posteriors τ, in a way that preserves the value of V and

preserves credibility.

Fix a pair of posterior beliefs p, p ′ ∈ P for which g (µp ,µp ′) =α∗. By Lemma A.3, no loss of

generality is implied by assuming that g (µp ,µy ) <α∗ for all y ∈ P \{p, p ′} (as otherwise at least

one posterior belief can be eliminated from P ). Credibility then implies that µy ∉ (µp ,µp ′) for

all y ∈ P \ {p, p ′}. 38

For ease of exposition, we start with the case in which ûS is everywhere single-valued. After

presenting the analysis for this case, we explain how it can be extended to the general case.

Suppose that ûS is single-valued. We distinguish between three cases:

(i) Suppose that g (µp ,µp,p ′) = α∗. In this case, the point (µp,p ′ , ûS(µp,p ′)) lies on the line

that connects the points (µp , ûS(µp )) and (µp ′ , ûS(µp ′)) in the mean/payoff plane, as il-

lustrated in Figure (8a).

Modify the message function such that in any state in which the messages that induce

p and p ′ were sent, the message function now sends only one message. Denote the

posterior belief induced by this new message by p ′′ and notice that the mean of p ′′ is

µp ′′ = µp,p ′ . The fact that g (µp ,µp,p ′) = g (µp,p ′ ,µp ′) = α∗ implies that the value of V is

unaffected by the modification (see also the proof of Lemma A.3).

37If either ûS (µx ) or ûS (µy ) is not single-valued, then fix values ûS (µx ) and ûS (µy ), respectively. If the condition
g (µp ,µx ) = g (µx ,µy ) = g (µy ,µp ′ ) is satisfied for these values, then the conclusion follows.

38To see this, suppose by way of contradiction that µy ∈ (µp ,µp ′ ) and that ûS (µp ′ ) > ûS
(
µp

)
(the other case is

handled similarly). Since g
(
µp ,µy

)<α∗ then ûS (µp ′ )− ûS (µy ) > ûS (µp ′ )− ûS
(
µp

)− (µy −µp ) ·α∗. Using the fact
that g (µp ,µp ′ ) =α∗ we have that ûS (µp ′ )−ûS (µy ) > (µp ′−µy )α∗, and sinceµy ∈ (µp ,µp ′ ) we have that g

(
µy ,µp ′

)>
α∗, contradicting the credibility of the message function.
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After the modification, we have that |g (µp ′′ ,µy )| < α∗ for all y ∈ P \ {p, p ′}. Intuitively,

this is because for any µy ∉ (µp ,µp ′), the slope of the line that connects the point

(µy , ûS(µy )) with the point (µp ′′ , ûS(µp ′′)) in the mean/payoff plane is between the slopes

of: (A) the line that connects (µy , ûS(µy )) with (µp , ûS(µp )) and (B) the line that connects

(µy , ûS(µy )) with (µp ′ , ûS(µp ′)). Since, by credibility, both (A) and (B) are smaller than α∗

in absolute value, the result follows.

Formally, fix any posterior belief y ∈ P \ {p, p ′}. Since g (µp ,µp ′′) =α∗, we have that

g
(
µy ,µp ′′

)= u
(
µp ′′

)−u
(
µy

)
µp ′′ −µy

= u
(
µp

)+α∗ (
µp ′′ −µp

)−u
(
µy

)
µp ′′ −µy

.

Differentiating g with respect to µp ′′ yields:

∂g
(
µy ,µp ′′

)
∂µp ′′

= (
µp −µy

) α∗− g
(
µy ,µp

)(
µp ′′ −µy

)2 . (21)

Recall that g
(
µy ,µp

) < α∗ for all y ∈ P \ {p, p ′}. Thus, if µy < µp , the right-hand side of

Equation (21) is positive and so g
(
µy ,µp

)< g
(
µy ,µp ′′

)< g (µy ,µp ′). And, if µy > µp ′ , the

right-hand side of Equation (21) is negative and so g
(
µy ,µp

) > g
(
µy ,µp ′′

) > g (µy ,µp ′).

It follows that |g (
µy ,µp ′′

) | < max[|g (
µy ,µp

) |, |g (µy ,µp ′)|] ≤α∗ for all µy 6∈ [µp ,µp ′].

Thus, the modified message function eliminates a pair of posterior beliefs for which the

credibility constraint was binding, and replaces it with one posterior belief for which

credibility is not binding for any other element in P .

(ii) Suppose that g (µp ,µp,p ′) < α∗. In this case, the point (µp,p ′ , ûS(µp,p ′)) is below the line

that connects the points (µp , û(µp )) and (µp ′ , û(µp ′)) in the mean/payoff plane, as illus-

trated in Figure 8b).

Let z1 ∈ [µp ,µp ′] be the lowest mean that is greater than µp,p ′ for which g (µp , z1) = α∗,

i.e., z1 = min[x|x >µp,p ′ and g (µp , x) =α∗]. Note that z1 necessarily exists, by the conti-

nuity of g and the intermediate value theorem (it could be the case that z1 =µp ′).

Replace the posteriors p and p ′ by the posteriors p and p ′′, where p ′′ is a posterior with

mean z1, in the manner described in Lemma A.2 and illustrated in Figure (8b). This

modification does not change the value of the function V because g (µp ,µp ′) = g (µp , z1).

Credibility of the original message function, and the fact that z1 ∈ (µp ,µp ′), imply that

|g (µy ,µp ′′)| < α∗ for all y ∈ P \ {p} (the analysis is identical to the one presented in case

(i) above). Therefore the modified message function satisfies credibility.

Continuity of g implies that, for any ε> 0, there exists a δ̂> 0, such that if 0 < δ< δ̂ then

there exists x ∈ [z1 −ε, z1] such that |g (µy , x)| ≤ α∗−δ for all y ∈ P \ {p ′}. Thus, when α

is close to α∗, we can modify the message function (by replacing the posterior beliefs p

and p ′′ by p and p ′′′, where p ′′′ is a posterior belief with mean x, in the manner described
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in Lemma A.2 and illustrated in Figure 8b), such that credibility is satisfied and the value

of V is only slightly affected.39

(iii) Suppose that g (µp ,µp,p ′) > α∗. In this case, the point (µp,p ′ , ûS(µp,p ′)) is above the line

that connects the points (µp , û(µp )) and (µp ′ , û(µp ′)) in the mean/payoff plane, as illus-

trated in Figure 8c).

Let z2 ∈ [µp ,µp ′] be the highest value that is smaller than µp,p ′ for which g (µp , z2) =α∗,

i.e. z2 = max[x|x < µp,p ′ and g (µp , x) = α∗]. For ease of notation we define g (µp ,µp ) =
α∗ and allow z2 to be equal to µp , which is the case that is illustrated in Figure (8c). As

in case (ii), z2 necessarily exists by the continuity of g .

If z2 6= µp , replace the posteriors p and p ′ by the posteriors p ′′ and p ′, where p ′′ is a

posterior with mean z2, in the manner described in Lemma A.2. As in case (ii) above,

this modification preserves the value of V and the credibility of the message function.

Continuity of g implies that, for any ε > 0, there exists a δ̂ > 0, such that if 0 < δ < δ̂

then there exists x ∈ [z2, z2 +ε] such that |g (µy , x)| ≤α∗−δ for all y ∈ P \ {p ′}. As in case

(ii) above, when α is close to α∗, we can modify the message function (by replacing the

posterior beliefs p ′ and p ′′ by p ′ and p ′′′, where p ′′′ is a posterior belief with mean x, in

the manner described in Lemma A.2 and illustrated in Figure 8c), such that credibility is

satisfied and the value of V is only slightly affected.

Thus, for any pair of posterior beliefs p, p ′ ∈ P for which credibility is binding in the orig-

inal message function, and for any small change in α∗, it is either the case that this pair can

be eliminated without affecting the value of V (case i), or there exists a modification of the

message function that restores credibility while only slightly affecting the value of V (cases (ii)

and (iii)). Therefore, if α is close to α∗ then the value V (p∗,α) is close to V (p∗,α∗).

To complete the proof, suppose now that ûS is not everywhere single-valued. The analysis

is similar to the analysis above up to a few technical adaptations described below.

Denote g (µp , x) = g (µp ,min{ûS(x)}) and g (µp , x) = g (µp ,max{ûS(x)}). Distinguish be-

tween the following three cases:

(i) Suppose that g (µp ,µp,p ′) <α∗ < g (µp ,µp,p ′). In this case, perform the change described

in case (i) above, with the additional assumption that if Receiver’s beliefs correspond to

µp,p ′ then he randomizes in such a way that g (µp ,µp,p ′) =α∗. The rest of the argument

carries over as in case (i).

(ii) Suppose that g (µp ,µp,p ′) <α∗. There exists a point z1 ∈ [µp,p ′ ,µp ′] such that g (µp , z1) ≤
α∗ ≤ g (µp , z1). Pick a payoff for Sender from ûS(z1) such that g (µp , z1) = α∗ where g is

39This is because ûS is a continuous function and because the distribution of posterior beliefs, τ̂, that is de-
scribed in the statement of Lemma A.2, is only slightly affected by the modification.
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computed according to this payoff at z1. The argument proceeds in the same way as in

case (ii) except that we allow ε to be zero so that instead of a new posterior belief p ′′′ we

may adjust the value of ûS(z1) downwards.

(iii) Suppose that g (µp ,µp,p ′) > α∗. There exists a point z2 ∈ [µp ,µp,p ′] such that g (µp , z2) ≤
α∗ ≤ g (µp , z2). Pick a payoff for Sender from ûS(z2) such that g (µp , z2) = α∗ where g is

computed according to this payoff at z2. The argument proceeds in the same way as in

case (iii) except that we allow ε to be zero so that instead of a new posterior belief p ′′′ we

adjust the value of ûS(z2) upwards.

Proof of Lemma A.2

Observe that this replacement of posteriors is performed in a way that contracts the distribu-

tion of posterior means and preserves both the conditional meanµp,p ′ and the meanµp∗ . This

implies that τ̂ second-order-stochastically-dominates τ. This ensures that the distribution τ̂

is Bayes plausible.

Suppose now that g
(
µp ,µx

) = g
(
µx ,µy

) = g
(
µy ,µp ′

)
. Sender’s value (V ) from employing

the modified message function is given by:∑
q∈P\{p,p ′}∪{x,y}

τ̂
(
q
) · ûS

(
q
)= ∑

q∈P\{p,p ′}
τ̂
(
q
)

ûS
(
q
)+ τ̂ (x) · ûS

(
µx

)+ τ̂(
y
) · ûS(µy ). (22)

By construction, we have that τ̂ (x) = µy−µp

µy−µx
·τ(

p
)− µp′−µy

µy−µx
·τ(

p ′). Since g
(
µp ,µx

)= g
(
µx ,µy

)=
g

(
µy ,µp ′

)
, it follows that

τ̂ (x) = ûS(µy )− ûS(µp )

ûS(µy )− ûS(µx)
·τ(

p
)− ûS(µp ′)− ûS(µy )

ûS(µy )− ûS(µx)
·τ(

p ′) .

By plugging this expression of τ̂ (x), and τ̂
(
y
)= τ(

p
)+τ(

p ′)− τ̂ (x), into the right-hand side of

Equation (22) we obtain∑
q∈P\{p,p ′}

τ̂
(
q
)

ûS
(
q
)+τ(

p
) · ûS

(
µp

)+τ(
p ′) · ûS(µp ′) = ∑

q∈P
τ̂
(
q
)

ûS
(
q
)

,

which is Sender’s value under the original message function.

Proof of Lemma A.3

Suppose that a credible message function induces the three posterior beliefs p, p ′, p ′′ as de-

scribed in the statement of the lemma.

If µp,p ′′ =µp ′ , modify the message function so that in any state in which the messages that

induced p and p ′′ are sent, the modified message function sends the message that induced p ′

instead. Thus, the mean of the posterior belief induced by this message remains µp,p ′′ . The
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fact that g (µp ,µp ′) = g (µp ′ ,µp ′′) implies that the value of V remains unchanged.40

If µp,p ′′ < µp ′ , replace the posteriors p and p ′′ in P by p and p ′, in the manner described

in Lemma A.2. If µp,p ′′ > µp ′ , replace the posteriors p and p ′′ in P by p ′ and p ′′ in the manner

described in Lemma A.2. These modifications do not change the value of the function V .

Finally, note that in all the cases described above, the modified message function does

not induce a posterior belief that was not induced by the original message function. Thus, the

credibility constraints in Sender’s problem (SP1) are only relaxed, and the fact that the original

message function was credible implies that the modified one is also credible.

Proof of Proposition 4

We prove the proposition for the case in which ûS is increasing and convex. The proof for the

case in which ûS is decreasing, or decreasing and then increasing, is analogous.

Suppose that the state space is binary, i.e., Ω = {l ,h} for some two numbers l ,h ∈ R with

l < h. A belief overΩ can be described by the probability p ∈ [0,1] that the state is h. The prior

belief is thus given by π ∈ (0,1). The mean of belief p is µp = l + (h − l ) p. In what follows we

normalize the parameters h and l to be 1 and 0, respectively, and therefore µp = p.

According to Corollary 2 the optimal message function induces either one posterior belief

that is equal to the prior π, or two credible posterior beliefs pL <π< pH , whichever generates

a higher expected payoff to Sender. In the former case, the ex-ante expected payoff to Sender

is ûS(π). In the latter case, the ex-ante expected payoff to Sender is pH · ûS(pH )+pL · ûS(pL).

Credibility requires that ûS (pH )−ûS (pL)
pH−pL

≤α.

We distinguish between the following three cases:

(i) If ûS(1)− ûS(0) ≤ α, then the a message function that induces a distribution τ over the

posterior beliefs p∗
L = 0 (realized with probability 1−π) and p∗

H = 1 (realized with prob-

ability probability π) is credible under α. Such a message function is optimal for Sender

because it concavifies ûS on the interval [0,1].

(ii) If ûS (π)−ûS (0)
π <α< ûS(1)−ûS(0), then the two optimally induced beliefs underα are p∗

L =
0 and p∗

H that is such that
ûS (p∗

H )−ûS (0)
p∗

H
= α. To see this, note first that for any different

pair of posterior beliefs pL <π< pH , decreasing pL relaxes the credibility constraint and

improves the ex-ante expected payoff to Sender. Then, it is possible to increase pH up

to p∗
H , where the credibility constraint is binding, i.e.,

ûS (p∗
H )−ûS (0)
p∗

H
= α, which further

increases the ex-ante expected payoff to Sender.

40To see this, note first that τ
(
p

)·ûS (µp )+τ(
p ′)·ûS (µp ′ ) = (

τ
(
p

)+τ(
p ′))( τ(p)

τ(p)+τ(p ′) ûS (µp )+ τ(p ′)
τ(p)+τ(p ′) ûS (µp ′ )

)
.

Next, since µp ′ =µp,p ′′ and g (µp ,µp ′ ) =αwe have that ûS (µp ) = ûS (µp,p ′′ )−(µp,p ′′ −µp )α, and since g (µp ′ ,µp ′′ ) =
α we have ûS (µp ′′ ) = ûS (µp,p ′′ ) + (

µp ′′ −µp,p ′′
)
α. By definition of µp,p ′′ we then obtain τ

(
p

) · ûS (µp ) + τ(
p ′) ·

ûS (µp ′ ) = (τ
(
p

)+τ(
p ′)) · ûS (µp,p ′′ ).
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(iii) Ifα≤ ûS (π)−ûS (0)
π

, then the unique feasible policy induces just one posterior belief, which

is equal to the prior π. This is because the convexity of ûS implies that ûS (pH )−ûS (pL)
pH−pL

is increasing in pL and in pH and therefore ûS (pH )−ûS (pL)
pH−pL

≥ α for any pL ≤ π and pH ≥
π. Thus, no message function can induce two (Bayes plausible) posterior beliefs in a

credible way.

Notice that decreasing the value of α does not affect Sender’s optimal distribution over

posteriors so long as α remains as in case (i) or (iii). As the value of α changes from case (i) to

(ii), or as α decreases in case (ii), Sender’s optimal distribution τ becomes more garbled. This

is because the convexity of û implies that ûS (pH )−ûS (0)
pH

increases in pH . Thus, a lower value of

α implies a lower value of p∗
H (i.e., messages are less informative with respect to the state).

Proof of Proposition 5

We first show that for any equilibrium there exists another equilibrium that generates an ex-

ante identical payoff to Sender and that employs no more than |Ω+1| messages. Suppose that

an equilibrium message function σ sends more than |Ω|+1 messages. Every message m ∈ M

that is sent by σ induces a posterior belief (distribution) pσ
m over the states. This belief can

be represented by a vector in R|Ω|−1. Sender’s equilibrium material payoff from inducing the

posterior belief pσ
m is vpσm . Thus, each message m that is sent byσ induces a vector (pσ

m , vpσm ) ∈
R|Ω|.

Denote Sender’s ex-ante expected payoff under σ by US(σ). Then,(
Em

[
pσ

m

]
,Em

[
vpσm

])= (π,US(σ)) ∈R|Ω|

where Em
[
pσ

m

] = π ∈ R|Ω|−1 follows from Bayes plausibility: the mean of the induced pos-

terior beliefs is equal to the prior belief, and Em
[
vpσm

] = US(σ) ∈ R by definition of US(σ).

Therefore, the vector (π,US(σ)) ∈ R|Ω| belongs to the convex hull that is generated by the set

{(pσ
m , vpσm )}m∈M .

By Carathéodory’s theorem (Rockafellar 1997, Theorem 17.1) it is possible to write the

vector {(π,US(σ)} as a convex combination of no more than |Ω| + 1 elements in the set

{(pσ
m , vpσm )}m∈M .

Suppose that the messages that induce these |Ω|+1 beliefs in the original message func-

tion σ are given by m1, . . . ,m|Ω|+1. Consider a message function σ′ that sends messages

m′
1, . . . ,m′

|Ω|+1 that induce the same posterior beliefs as those induced by m1, . . . ,m|Ω|+1, with

the probabilities determined by Carathéodory’s theorem. By construction, pσ′
m′

j
= pσ

m j
for

j ∈ {1, · · · , |Ω| + 1}. Note that the message function σ′ generates the same ex-ante expected

payoff to Sender as σ.

We now show that the message function σ′ can also be part of an equilibrium. Denote by

qσ (m,ω) the probability that message m is sent in state ω by message function σ. Observe
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that:

qσ(m j ,ω) = 0 ⇒ qσ
′
(m′

j ,ω) = 0 ∀ j ∈ {1, · · · , |Ω|+1},∀ω ∈Ω,

because, otherwise, qσ
′
(m′

j ,ω) > 0 = qσ(m j ,ω) for some j ∈ {1, · · · , |Ω| +1} and ω ∈ Ω. Then,

pσ′
m′

j
[ω] > 0 while pσ

m j
[ω] = 0. This is in contradiction to the fact that pσ′

m′
j
= pσ

m j
for j ∈

{1, · · · , |Ω| + 1}. Thus, every belief that is induced by σ′ in some state ω was also induced by

σ in ω. Therefore, the credibility of σ implies the credibility of σ′.
Thus, we have shown that we may restrict our attention to equilibria that employ no more

than |Ω|+1 messages.

Consider an equilibrium message function σ that employs |Ω| + 1 messages, that in-

duce posterior beliefs p1, . . . , p|Ω|+1 with probabilities λ1, . . . ,λ|Ω|+1, respectively, such that∑|Ω|+1
i=1 λi pi =π. Denote the set of these posterior beliefs by P = {p1, . . . , p|Ω|+1} and denote the

ex-ante expected payoff to Sender that is generated byσ by
∑|Ω|+1

i=1 λi ·vpi ≡U . We may assume

that each λi is positive and that each pi is different from π because otherwise it is possible to

induce an ex-ante expected payoff that is at least U with no more than |Ω| messages.

We proceed with the following lemma.

Lemma A.4 Suppose that S = {x1, . . . , xd+2} is a set of d+2 vectors inRd . For any vector p ∈Rd in

the convex hull generated by S, denoted by co(S), there exist at least two distinct subsets S′,S′′ ⊂ S

with no more than d +1 elements each, such that p ∈ co(S′)∩co(S′′).

Proof. For any vector x ∈ Rd , denote the vector’s i th coordinate by x[i ], and set x̄ ≡ (1
x

) ∈ Rd+1.

Define the matrices X = [x1 x2 · · · xd+2] ∈ Rd×(d+2) and X = [x̄1 x̄2 · · · x̄d+2] ∈ R(d+1)×(d+2).

Since p ∈ co(S), there exists a vector λ = (λ[1], . . . ,λ[d+2])
T ∈ Rd+2 such that

∑d+2
i=1 λ[i ] = 1 and

Xλ= p.

The vectors x̄1, x̄2, . . . , x̄d+2 are linearly dependent. Hence, there is a vector α =
(α[1], . . . ,α[d+2])

T ∈ Rd+2, with coordinates not all equal to zero, such that α ∈ ker
(

X
)
. Since∑d+2

i=1 α[i ] = 0 it follows that α has at least one positive coordinate and at least one negative

coordinate.

Suppose without loss of generality that the coordinates in α are ordered such that λ[1]
α[1]

≤
·· · ≤ λ[k]

α[k]
< 0 < λ[k+1]

α[k+1]
≤ ·· · ≤ λ[d+2]

α[d+2]
. We can therefore decompose the vector p as follows:

p =
d+2∑
i=1

λ[i ]x̄i =
k∑

i=1
λ[i ]x̄i +

λ[k+1]

α[k+1]

d+2∑
i=k+1

α[i ]x̄i +
d+2∑

i=k+2

(
λ[i ]

α[i ]
− λ[k+1]

α[k+1]

)
α[i ]x̄i .

Substituting
∑d+2

i=k+1α[i ]x̄i =−∑k
i=1α[i ]x̄i and rearranging yields

p =
k∑

i=1

(
λ[i ]

α[i ]
− λ[k+1]

α[k+1]

)
α[i ]x̄i +

d+2∑
i=k+2

(
λ[i ]

α[i ]
− λ[k+1]

α[k+1]

)
α[i ]x̄i .

Therefore, the vector β = (β[1], . . . ,β[d+2])
T that is defined such that β[i ] =

(
λ[i ]
α[i ]

− λ[k+1]
α[k+1]

)
α[i ]

satisfies
∑d+2

i=1 β[i ] = 1 and Xβ= p and all its coordinates are nonnegative. A similar argument
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shows that the vector γ= (γ[1], . . . ,γ[d+2])
T that is defined such that γ[i ] =

(
λ[i ]
α[i ]

− λ[k]
α[k]

)
α[i ] satis-

fies
∑d+2

i=1 γ[i ] = 1 and Xγ= p and all its coordinates are nonnegative.

Let S′ = {x1, . . . , xk , xk+2, . . . , xd+2} and S′′ = {x1, . . . , xk−1, xk+1, . . . , xd+2}. We have therefore

shown that p ∈ co(S′) and p ∈ co(S′′). Moreover, notice that λ[i ] = νβ[i ] + (1−ν)γ[i ] where

ν= 1

1− λk+1
αk+1

αk
λk

.

By Lemma A.4, given any set of beliefs P = {p1, . . . , p|Ω|+1} that are each different from π,

and are induced with positive probabilities λ1, . . . ,λ|Ω|+1, respectively, such that
∑|Ω|+1

i=1 λi pi =
π, there exist at least two subsets of beliefs P ′,P ′′ ⊂ P with no more than |Ω| elements each,

with associated probabilities λ′ and λ′′ that also average the prior belief π. With slight abuse

of notation we also use λ′ and λ′′ to denote the |Ω| + 1-dimensional vectors of probabilities

p1, . . . , p|Ω|+1 where instead of the probability associated with the belief that is missing from

the subsets P ′ and P ′′, respectively, we write zero.

Inspection of the proof of Lemma A.4 reveals that the vector λ can be written as a convex

combination of the vectors λ′ and λ′′. Therefore, the expected payoff U =∑|Ω|+1
i=1 λi ·vpi can be

written as a convex combination of the expected payoffs U ′ =∑|Ω|+1
i=1 λ′

i ·vpi and U ′′ =∑|Ω|+1
i=1 λ′′

i ·
vpi associated with the two vectors of probabilities λ′ and λ′′. It follows that either U ′ or U ′′ is

greater than or equal to U .

Finally, the message functions σ′ and σ′′ that induce the posterior beliefs in P ′ and P ′′,
respectively, satisfy credibility because of the same argument used in the first part of the proof.

Namely,

qσ(m j ,ω) = 0 ⇒ qσ
′
(m′

j ,ω) = 0, pσ′′
(m′

j ,ω) = 0 ∀ j ∈ {1, · · · , |Ω|+1},

because, otherwise, qσ
′
(m′

j ,ω), qσ
′′
(m′

j ,ω) = 0 > 0 = qσ(m j ,ω). Thus, it is never the case that a

message is sent under σ′ at a state where it was not sent under σ. Therefore, the credibility of

σ implies the credibility of σ′ and σ′′.
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